The trophic ecology of Caribbean reef sharks (Carcharhinus perezi) relative to other large teleost predators on an isolated coral atoll

Abstract

Bulk stable isotope analysis was used to assess the trophic level and foraging habitats of Caribbean reef sharks (Carcharhinus perezi) compared to three large sympatric predatory teleosts (the Nassau grouper Epinephelus striatus, black grouper Mycteroperca bonaci, and great barracuda Sphyraena barracuda) in an isolated Caribbean coral reef ecosystem. Models and empirical studies have suggested that the depletion of large-bodied sharks in coral reef ecosystems triggers a trophic cascade that could affect the benthic community, favoring algae over coral. The hypothesized cascade is based on the premise that sharks prey on large piscivorous teleost fish that in turn prey on key herbivorous fish. Analysis of nitrogen-stable isotopes (δ15N) from white muscle tissue revealed neither adult or juvenile Caribbean reef sharks were significantly enriched in 15N compared with sympatric predatory teleost species. Linear regression found no evidence of an ontogenetic increase in nitrogen with increasing body size for Caribbean reef sharks; however, there was a significant positive relationship between body size and carbon isotope (δ13C) values. These results suggest that Caribbean reef sharks in isolated systems do not act as the apex predator in coral reef ecosystems primarily feeding on large-bodied sympatric teleosts. Instead, Caribbean reef sharks form part of an upper trophic-level predator guild alongside large-bodied teleosts, which makes the predicted trophic cascade as a result of the removal of reef sharks unlikely. Moreover, the body size–δ13C relationship suggests Caribbean reef sharks exhibit ontogenetic and individual variation in where they feed. The ecological role of this species is, therefore, complex and contextual, similar to carcharhinid species in the Indo-Pacific, emphasizing the need to further elucidate the interactions between reef sharks and the overall coral reef ecosystem so as to best inform effective conservation and management of the species.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bascompte J, Melian CJ, Sala E (2005) Interaction strength combinations and the overfishing of a marine food web. Proc Natl Acad Sci USA 102:5443–5447. https://doi.org/10.1073/pnas.0501562102

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Bond ME, Babcock EA, Pikitch EK, Abercrombie DL, Lamb NF, Chapman DD (2012) Reef sharks exhibit site-fidelity and higher relative abundance in marine reserves on the mesoamerican barrier reef. PLoS One 7:e32983

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bond ME, Valentin-Albanese J, Babcock EA, Abercrombie D, Lamb NF, Miranda A, Pikitch EK, Chapman DD (2017) Abundance and size structure of a reef shark population within a marine reserve has remained stable for more than a decade. Mar Ecol Prog Ser 576:1–10

    Article  Google Scholar 

  4. Borer E, Seabloom E, Shurin J, Anderson K, Blanchette C, Broitman B, Cooper S, Halpern B (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  5. Brooks EJ, Sims DW, Danylchuk AJ, Sloman KA (2013) Seasonal abundance, philopatry and demographic structure of Caribbean reef shark (Carcharhinus perezi) assemblages in the north-east Exuma Sound, The Bahamas. Mar Biol 160:2535–2546

    Article  Google Scholar 

  6. Burkholder DA, Heithaus MR, Fourqurean JW, Wirsing A, Dill LM (2013) Patterns of top-down control in a seagrass ecosystem: could a roving apex predator induce a behaviour-mediated trophic cascade? J Anim Ecol 82:1192–1202

    Article  PubMed  Google Scholar 

  7. Casey JM, Baird AH, Brandl SJ, Hoogenboom MO, Rizzari JR, Frisch AJ, Mirbach CE, Connolly SR (2016) A test of trophic cascade theory: fish and benthic assemblages across a predator density gradient on coral reefs. Oecologia 183:161–175. https://doi.org/10.1007/s00442-016-3753-8

    Article  PubMed  Google Scholar 

  8. Castro J (1983) The sharks of North American waters. Texas A. & M. Press, College Station

    Google Scholar 

  9. Castro JI (2011) The sharks of North America. Oxford University Press, Oxford

    Google Scholar 

  10. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453

    CAS  Article  Google Scholar 

  11. Chapman MR, Kramer DL (2000) Movements of fishes within and among fringing coral reefs in Barbados. Environ Biol Fishes 57:11–24

    Article  Google Scholar 

  12. Chapman DD, Pikitch EK, Babcock E, Shivji MS (2005) Marine reserve design and evaluation using automated acoustic telemetry: a case-study involving coral reef-associated sharks in the Mesoamerican Caribbean. Mar Technol Soc J 39:42–55

    Article  Google Scholar 

  13. Chapman DD, Pikitch EK, Babcock EA, Shivji MS (2007) Deep-diving and diel changes in vertical habitat use by Caribbean reef sharks Carcharhinus perezi. Mar Ecol Prog Ser 344:271–275. https://doi.org/10.3354/meps06941

    Article  Google Scholar 

  14. Compagno L (1999) Checklist of living elasmobranchs. Sharks, skates, and rays: the biology of elasmobranch fishes. The John Hopkins University Press, Baltimore

    Google Scholar 

  15. Compagno LJV, Dando M, Fowler SL (2005) A field guide to the Sharks of the World. Harper Collins, Glasgow

    Google Scholar 

  16. Cordeiro C, Mendes T, Harborne A, Ferreira C (2015) Spatial distribution of nominally herbivorous fishes across environmental gradients on Brazilian rocky reefs. J Fish Biol 89:939–958

    Article  PubMed  Google Scholar 

  17. Cortés E (1999) Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci Journal du Conseil 56:707–717

    Article  Google Scholar 

  18. Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201

    Article  PubMed  Google Scholar 

  19. Creel S, Winnie JA, Christianson D (2013) Underestimating the frequency, strength and cost of antipredator responses with data from GPS collars: an example with wolves and elk. Ecol Evol 3:5189–5200

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dahlgren C (2014) Review of the benefits of no-take zones: a report to the Wildlife Conservation Society. Wildlife Conservation Society, Bronx, NY

    Google Scholar 

  21. Done TJ (1992) Phase shifts in coral reef communities and their ecological significance. In: Jaccarini V, Martens E (eds) The ecology of mangrove and related ecosystems. Springer, Dordrecht, pp 121–132

    Google Scholar 

  22. Estes JA, Duggins DO (1995) Sea otters and kelp forests in Alaska: generality and variation in a community ecological paradigm. Ecol Monogr 65:75–100

    Article  Google Scholar 

  23. Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JB (2011) Trophic downgrading of planet earth. Science 333:301–306

    CAS  Article  PubMed  Google Scholar 

  24. Estrada JA, Rice AN, Lutcavage ME, Skomal GB (2003) Predicting trophic position in sharks of the north-west Atlantic Ocean using stable isotope analysis. J Mar Biol Assoc UK 83:1347–1350

    CAS  Article  Google Scholar 

  25. Estrada JA, Aaron NR, Natanson LJ, Skomal GB (2006) Use of isotopic analysis of vertebrae in reconstructing ontogenetic feeding ecology in white sharks. Ecology 87:829–834. https://doi.org/10.2307/20069012

    Article  PubMed  Google Scholar 

  26. Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407

    CAS  Article  PubMed  Google Scholar 

  27. Frisch A, Ireland M, Baker R (2014) Trophic ecology of large predatory reef fishes: energy pathways, trophic level, and implications for fisheries in a changing climate. Mar Biol 161:61–73. https://doi.org/10.1007/s00227-013-2315-4

    Article  Google Scholar 

  28. Frisch AJ, Ireland M, Rizzari JR, Lönnstedt OM, Magnenat KA, Mirbach CE, Hobbs J-PA (2016) Reassessing the trophic role of reef sharks as apex predators on coral reefs. Coral Reefs 35:459–472

    Article  Google Scholar 

  29. Froese R, Pauly D (eds) (2018) FishBase: concepts designs and data sources. WorldFish, Malaysia

    Google Scholar 

  30. Fry B (2006) Stable isotope ecology. Springer, Boston, MA

    Google Scholar 

  31. Gibson J (2003) Glover’s reef marine reserve & world heritage site management plan. Commissioned by the Coastal Zone Management Authority and Institute (CZMAI) on behalf of the Fisheries Department Belize City, Belize CZMAI, Belize City

  32. Glazer RA, Delgado GA, Kidney JA (2003) Estimating queen conch (Strombus gigas) home ranges using acoustic telemetry: implications for the design of marine fishery reserves. Gulf Caribb Res 14:79–89

    Article  Google Scholar 

  33. Heithaus M, Dill L, Marshall G, Buhleier B (2002) Habitat use and foraging behavior of tiger sharks (Galeocerdo cuvier) in a seagrass ecosystem. Mar Biol 140:237–248

    Article  Google Scholar 

  34. Heithaus MR, Wirsing AJ, Frid A, Dill LM (2007) Behavioral indicators in marine conservation: lessons from a pristine seagrass ecosystem. Isr J Ecol Evol 53:355–370

    Article  Google Scholar 

  35. Heithaus MR, Frid A, Wirsing AJ, Worm B (2008) Predicting ecological consequences of marine top predator declines. Trends Ecol Evol 23:202–210

    Article  PubMed  Google Scholar 

  36. Heithaus MR, Wirsing AJ, Burkholder D, Thomson J, Dill LM (2009) Towards a predictive framework for predator risk effects: the interaction of landscape features and prey escape tactics. J Animal Ecol 78(3):556–562

    Article  Google Scholar 

  37. Heithaus MR, Wirsing A, Dill L (2012) The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar Freshw Res 63:1039–1050

    Article  Google Scholar 

  38. Helfman GS (1986) Fish behaviour by day, night and twilight the behaviour of teleost fishes. Springer, Boston, MA, pp 366–387

    Google Scholar 

  39. Heupel MR, Knip DM, Simpfendorfer CA, Dulvy NK (2014) Sizing up the ecological role of sharks as predators. Mar Ecol Prog Ser 495:291–298

    Article  Google Scholar 

  40. Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326

    Article  PubMed  Google Scholar 

  41. Hussey NE, Aaron MacNeil M, McMeans BC, Olin JA, Dudley SF, Cliff G, Wintner SP, Fennessy ST, Fisk AT (2014a) Corrigendum to Hussey et al. Ecol Lett 17:768

    Article  PubMed Central  Google Scholar 

  42. Hussey NE, MacNeil MA, McMeans BC, Olin JA, Dudley SFJ, Cliff G, Wintner SP, Fennessy ST, Fisk AT (2014b) Rescaling the trophic structure of marine food webs. Ecol Lett 17:239–250. https://doi.org/10.1111/ele.12226

    Article  PubMed  Google Scholar 

  43. Jackson AL, Inger R, Parnell AC, Bearhop S (2011) Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R. J Animal Ecol 80(3):595–602

    Article  Google Scholar 

  44. Jud ZR, Layman CA (2012) Site fidelity and movement patterns of invasive lionfish, Pterois spp., in a Florida estuary. J Exp Mar Biol Ecol 414:69–74

    Article  Google Scholar 

  45. Kim SL, del Rio CM, Casper D, Koch PL (2012) Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol 215:2495–2500

    Article  PubMed  Google Scholar 

  46. Layman CA, Winemiller KO, Arrington DA, Jepsen DB (2005) Body size and trophic position in a diverse tropical food web. Ecology 86:2530–2535

    Article  Google Scholar 

  47. Layman CA, Arrington AD, Montan CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  48. Lepoint G, Michel L, Parmentier E, Frédérich B (2016) Trophic ecology of the seagrass-inhabiting footballer demoiselle Chrysiptera annulata (Peters, 1855); comparison with three other reef-associated damselfishes. Belg J Zool 146:21–32

    Google Scholar 

  49. Lowe CG, Wetherbee BM, Crow GL, Tester AL (1996) Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fishes 47:203–211

    Article  Google Scholar 

  50. Maljković A, Côté IM (2011) Effects of tourism-related provisioning on the trophic signatures and movement patterns of an apex predator, the Caribbean reef shark. Biol Cons 144:859–865

    Article  Google Scholar 

  51. Matich P, Heithaus MR, Layman CA (2011) Contrasting patterns of individual specialization and trophic coupling in two marine apex predators. J Anim Ecol 80:294–305

    Article  PubMed  Google Scholar 

  52. McCann KS, Rasmussen J, Umbanhowar J (2005) The dynamics of spatially coupled food webs. Ecol Lett 8:513–523

    CAS  Article  PubMed  Google Scholar 

  53. McCauley DJ, Young HS, Dunbar RB, Estes JA, Semmens BX, Micheli F (2012) Assessing the effects of large mobile predators on ecosystem connectivity. Ecol Appl 22:1711–1717

    Article  PubMed  Google Scholar 

  54. Morris J, Akins J, Barse A, Cerino D, Freshwater D, Green S, Muñoz R, Paris C, Whitfield P (2009) Biology and ecology of the invasive lionfishes, Pterois miles and Pterois volitans. In: Proceedings of the Gulf and Caribbean Fisheries Institute, pp 409–414

  55. Motta F, Moura R, Francini-Filho R, Namora R (1999) Elasmobrânquios dos recifes Manoel Luıs—MA. Resumos do XIII Encontro Brasileiro de Ictiologia 1:267

    Google Scholar 

  56. Mumby PJ, Dahlgren CP, Harborne AR, Kappel CV, Micheli F, Brumbaugh DR, Holmes KE, Mendes JM, Broad K, Sanchirico JN (2006) Fishing, trophic cascades, and the process of grazing on coral reefs. Science 311:98–101

    CAS  Article  PubMed  Google Scholar 

  57. Munroe S, Simpfendorfer C, Heupel M (2014) Defining shark ecological specialisation: concepts, context, and examples. Rev Fish Biol Fish 24:317–331

    Article  Google Scholar 

  58. O’Farrell S, Bearhop S, McGill RA, Dahlgren CP, Brumbaugh DR, Mumby PJ (2014) Habitat and body size effects on the isotopic niche space of invasive lionfish and endangered Nassau grouper. Ecosphere 5:1–11

    Article  Google Scholar 

  59. Olin JA, Hussey NE, Fritts M, Heupel MR, Simpfendorfer CA, Poulakis GR, Fisk AT (2011) Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals. Rapid Commun Mass Spectrom 25:1008–1016

    CAS  Article  PubMed  Google Scholar 

  60. Opitz S (1996) Trophic interactions in Caribbean coral reefs. WorldFish, Malaysia

    Google Scholar 

  61. Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488

    CAS  Article  PubMed  Google Scholar 

  62. Papastamatiou YP, Friedlander AM, Caselle JE, Lowe CG (2010) Long-term movement patterns and trophic ecology of blacktip reef sharks (Carcharhinus melanopterus) at Palmyra Atoll. J Exp Mar Biol Ecol 386:94–102

    Article  Google Scholar 

  63. Parker R, Mays R (1998) Southeastern US deepwater reef fish assemblages, habitat characteristics, catches, and life history summaries. US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Scientific Publications Office

  64. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320

    Article  Google Scholar 

  65. Pikitch EK, Chapman DD, Babcock EA, Shivji MS (2005) Habitat use and demographic population structure of elasmobranchs at a Caribbean atoll (Glover’s Reef, Belize). Mar Ecol Prog Ser 302:187–197

    Article  Google Scholar 

  66. Plass-Johnson J, McQuaid C, Hill J (2015) The effects of tissue type and body size on δ13C and δ15N values in parrotfish (Labridae) from Zanzibar, Tanzania. J Appl Ichthyol 31:633–637

    Article  Google Scholar 

  67. Polis GA, Sears AL, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475

    CAS  Article  PubMed  Google Scholar 

  68. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  69. Prugh LR, Stoner CJ, Epps CW, Bean WT, Ripple WJ, Laliberte AS, Brashares JS (2009) The rise of the mesopredator. Bioscience 59:779–791

    Article  Google Scholar 

  70. Randall JE (1964) Contributions to the biology of the queen conch, Strombus gigas. Bull Mar Sci 14:246–295

    Google Scholar 

  71. Randall JE (1967) Food habits of reef fishes of the West Indies. Inst Mar Biol 1967:665–673

    Google Scholar 

  72. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

  73. Ritchie EG, Johnson CN (2009) Predator interactions, mesopredator release and biodiversity conservation. Ecol Lett 12:982–998

    Article  PubMed  Google Scholar 

  74. Rizzari JR, Frisch AJ, Hoey AS, McCormick MI (2014) Not worth the risk: apex predators suppress herbivory on coral reefs. Oikos 123:829–836

    Article  Google Scholar 

  75. Roff G, Doropoulos C, Rogers A, Bozec Y-M, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ (2016a) The ecological role of sharks on coral reefs. Trends Ecol Evol 31:395–407

    Article  PubMed  Google Scholar 

  76. Roff G, Doropoulos C, Rogers A, Bozec Y-M, Krueck NC, Aurellado E, Priest M, Birrell C, Mumby PJ (2016b) Reassessing shark-driven trophic cascades on coral reefs: a reply to Ruppert et al. Trends Ecol Evol 31:587–589

    Article  PubMed  Google Scholar 

  77. Romanuk TN, Hayward A, Hutchings JA (2011) Trophic level scales positively with body size in fishes. Glob Ecol Biogeogr 20:231–240

    Article  Google Scholar 

  78. Rosa RS, Mancini P, Caldas JP, Graham RT (2006) Carcharhinus perezi. The IUCN red list of threatened species. The IUCN Red List of Threatened Species Version 20143

  79. Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement patterns and stable isotopes. Trends Ecol Evol 19:256–263

    Article  PubMed  Google Scholar 

  80. Ruppert JL, Fortin M-J, Meekan MG (2016) The ecological role of sharks on coral reefs: response to Roff et al. Trends Ecol Evol 31:586–587

    Article  PubMed  Google Scholar 

  81. Speed CW, Meekan MG, Field IC, McMahon CR, Abrantes K, Bradshaw CJA (2011) Trophic ecology of reef sharks determined using stable isotopes and telemetry. Coral Reefs 31:357–367. https://doi.org/10.1007/s00338-011-0850-3

    Article  Google Scholar 

  82. Stevenson C, Katz LS, Micheli F, Block B, Heiman KW, Perle C, Weng K, Dunbar R, Witting J (2007) High apex predator biomass on remote Pacific islands. Coral Reefs 26:47–51

    Article  Google Scholar 

  83. Tavares RAT (2009) Fishery biology of the Caribbean reef sharks, Carcharhinus perezi (Poey, 1876), in a Caribbean insular platform: Los Roques Archipelago National Park, Venezuela. Pan Am J Aquatic Sci 4:500–512

    Google Scholar 

  84. Terborgh J, Estes J, Paquet P, Ralls K, Boyd-Heger D, Miller B, Noss R (1999) The role of top carnivores in regulating terrestrial ecosystems. Wild Earth 9:42–56

    Google Scholar 

  85. Tilley A, Strindberg S (2012) Population density estimation of southern stingrays Dasyatis americana on a Caribbean atoll using distance sampling. Aquat Conserv Mar Freshw Ecosyst 23(2):202–229

    Article  Google Scholar 

  86. Tilley A, López-Angarita J, Turner JR (2013a) Diet reconstruction and resource partitioning of a caribbean marine mesopredator using stable isotope bayesian modelling. PLoS One 8:e79560

    Article  PubMed  PubMed Central  Google Scholar 

  87. Tilley A, López-Angarita J, Turner JR (2013b) Effects of scale and habitat distribution on the movement of the southern stingray Dasyatis americana on a Caribbean atoll. MEPS 482:169–179

    Article  Google Scholar 

  88. Vander Zanden MJ, Cabana G, Rasmussen JB (1997) Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Can J Fish Aquat Sci 54:1142–1158

    Article  Google Scholar 

  89. Ward-Paige CA, Mora C, Lotze HK, Pattengill-Semmens C, McClenachan L, Arias-Castro E, Myers RA (2010) Large-scale absence of sharks on reefs in the greater-Caribbean: a footprint of human pressures. PLoS One 5:e11968

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wetherbee BM, Cortés E, Bizzarro JJ (2004) Food consumption and feeding habits. In: Biology of sharks and their relatives. CRC Press, Boca Raton, USA, pp 225–246

    Google Scholar 

  91. Wirsing AJ, Ripple WJ (2010) A comparison of shark and wolf research reveals similar behavioral responses by prey. Front Ecol Environ 9:335–341

    Article  Google Scholar 

  92. Wirsing AJ, Heithaus MR, Dill LM (2007) Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia 153:1031–1040

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by grants from Earthwatch International (to DDC and EAB) and the Roe Foundation (to DDC). We would like to thank all the Earthwatch volunteers and Dr. Alex Tilley for their tireless efforts collecting the samples, and for providing additional samples, respectively. Captain Norlan Lamb, Ashbert Miranda, and the management and staff of Wildlife Conservation Society Belize and the Glover’s Reef Research Station provided outstanding logistical support. Furthermore, thanks to Anna Hussey and Aaron Fisk for assistance and mentorship in the lab and the Stony Brook students who helped prepare the samples.

Funding

This work was funded by grants from Earthwatch International (Grant number 7262541).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark E. Bond.

Ethics declarations

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Stony Brook University and this work was carried out under the necessary research and animal care permits from the Government of Belize Ministry of Agriculture and Fisheries.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Reviewed by G. Roff and an undisclosed expert.

Responsible Editor: J. K. Carlson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 712 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bond, M.E., Valentin-Albanese, J., Babcock, E.A. et al. The trophic ecology of Caribbean reef sharks (Carcharhinus perezi) relative to other large teleost predators on an isolated coral atoll. Mar Biol 165, 67 (2018). https://doi.org/10.1007/s00227-018-3322-2

Download citation