Marine Biology

, 164:205 | Cite as

Diel feeding rhythms in marine microzooplankton: effects of prey concentration, prey condition, and grazer nutritional history

  • Anna Arias
  • Enric Saiz
  • Albert Calbet
Original paper


In this study, we aim at disentangling the causes and consequences of diel feeding rhythms in marine microzooplankton. We focused on the diel feeding activity of two heterotrophic dinoflagellate species, Gyrodinium dominans (one laboratory strain) and Oxyrrhis marina (laboratory cultivated and wild strains). We observed higher ingestion during the day in both dinoflagellate species. Feeding rhythms appeared to be independent of circadian changes in prey biochemical composition. Grazers fed with prey under stationary phase, with equivalent stoichiometric composition between day and night, showed 5 (G. dominans) and 10 (O. marina) times higher ingestion rates during the day. Previous grazer feeding history (starved vs well-fed) did not affect the feeding rhythm. However, prey concentration altered the rhythm; food limiting conditions reduced the amplitude of the rhythms. Our results establish a resource dependence of diel periodicity in microzooplankton grazing, which can have unanticipated consequences for standard field dilution grazing experiments.



We are grateful to Kaiene Griffell for technical assistance in culture maintenance and help during the experimental trails.

Compliance with ethical standards

Ethical standards

This study was funded by project FERMI (CGL2014-59227-R; MINECO/FEDER, UE). Anna Arias was funded with a FPI fellowship (BES-2015-074092) from the MINECO of Spain.

Conflict of interest

Anna Arias, Enric Saiz and Albert Calbet declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.


  1. Begun AA, Orlova TY, Selina MS (2004) A “Bloom” in the Water of Amursky Bay (Sea of Japan) caused by the Dinoflagellate Oxyrrhis marina Dujardin, 1841. Russ J Mar Biol 30:51–55. doi: 10.1023/B:RUMB.0000020569.49887.7e CrossRefGoogle Scholar
  2. Binder BJ, DuRand MD (2002) Diel cycles in surface waters of the equatorial Pacific. Deep Sea Res Part II Top Stud Oceanogr 49:2601–2617. doi: 10.1016/S0967-0645(02)00050-4 CrossRefGoogle Scholar
  3. Bollens S (1996) Diel vertical migration in zooplankton: trade-offs between predators and food. Oceanus 39(1):19–20Google Scholar
  4. Bollens SM, Frost BW (1991) Ovigerity, selective predation, and variable diel vertical migration in Euchaeta elongata (Copepoda: Calanoida). Oecologia 87:155–161. doi: 10.1007/BF00325252 CrossRefGoogle Scholar
  5. Boyd CM, Smith SL, Cowles TJ (1980) Grazing patterns of copepods in the upwelling system off Peru. Limnol Oceanogr 25:583–596. doi: 10.4319/lo.1980.25.4.0583 CrossRefGoogle Scholar
  6. Broglio E, Johansson M, Jonsson P (2001) Trophic interaction between copepods and ciliates: effects of prey swimming behavior on predation risk. Mar Ecol Prog Ser 220:179–186. doi: 10.3354/meps220179 CrossRefGoogle Scholar
  7. Bruce VG (1970) The biological clock in Chlamydomonas reinhardi. J Protozool 17:328–334. doi: 10.1111/j.1550-7408.1970.tb02380.x CrossRefGoogle Scholar
  8. Calbet A, Landry M (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49(1):51–57CrossRefGoogle Scholar
  9. Calbet A, Saiz E (2005) The ciliate-copepod link in marine ecosystems. Aquat Microb Ecol 38(2):157–167CrossRefGoogle Scholar
  10. Calbet A, Saiz E, Irigoien X, Alcaraz M, Trepat I (1999) Food availability and diel feeding rhythms in the marine copepods Acartia grani and Centropages typicus. J Plankton Res 21:1009–1015CrossRefGoogle Scholar
  11. Calbet A, Isari S, Martínez RA, Saiz E, Garrido S, Peters J, Borrat RM, Alcaraz M (2013) Adaptations to feast and famine in different strains of the marine heterotrophic dinoflagellates Gyrodinium dominans and Oxyrrhis marina. Mar Ecol Prog Ser 483:67–84CrossRefGoogle Scholar
  12. Chisholm SW, Brand LE (1981) Persistence of cell division phasing in marine phytoplankton in continuous light after entrainment to light: dark cycles. J Exp Mar Biol Ecol 51:107–118. doi: 10.1016/0022-0981(81)90123-4 CrossRefGoogle Scholar
  13. Christoffersen K (1994) Variations of feeding activities of heterotrophic nanoflagellates on picoplankton. Mar Microb Food Web 8:11–123Google Scholar
  14. Clark DR, Flynn KJ, Owens NJP (2002) The large capacity for dark nitrate-assimilation in diatoms may overcome nitrate limitation of growth. New Phytol 155:101–108. doi: 10.1046/j.1469-8137.2002.00435.x CrossRefGoogle Scholar
  15. Conover RJ (1968) Zooplankton-life in a nutritionally dilute environment. Am Zool 8(1):107–118CrossRefGoogle Scholar
  16. Dolan JR, Šimek K (1999) Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellates: analysis of food vacuole contents. Limnol Oceanogr 44:1565–1570. doi: 10.4319/lo.1999.44.6.1565 CrossRefGoogle Scholar
  17. Duval WS, Geen GH (1976) Diel feeding and respiration rhythms in zooplankton. Limnol Oceanogr 21(6):823–829CrossRefGoogle Scholar
  18. Edmunds LN (1965) Studies on synchronously dividing cultures of Euglena gracilis Klebs (strain Z). I. Attainment and characterization of rhythmic cell division. J Cell Comp Physiol 66:147–158. doi: 10.1002/jcp.1030660204 CrossRefGoogle Scholar
  19. Edmunds LN (1988) Cellular and molecular bases of biological clocks: models and mechanisms for circadian timekeeping. Springer, Berlin, p 497Google Scholar
  20. Eppley RW, Coatsworth JL (1966) Culture of the marine phytoplankter, Dunaliella tertiolecta, with light–dark cycles. Arch for Mikrobiol 55:66–80. doi: 10.1007/BF00409157 CrossRefGoogle Scholar
  21. Fenchel T (1990) Adaptive significance of polymorphic life cycle in protozoa: responses to starvation and refeeding in two species of marine ciliates. J Exp Mar Biol Ecol 136:159–177CrossRefGoogle Scholar
  22. Fenchel T, Finlay BJ (1983) Respiration rates in heterotrophic, free-living protozoa. Microb Ecol 9:99–122. doi: 10.1007/BF02015125 CrossRefGoogle Scholar
  23. Frost BW (1977) Feeding behavior of Ditylum brightwellii in mixtures of food particles. Limnol Oceanogr 22:472–491CrossRefGoogle Scholar
  24. Gauld DT (1938) Diurnal variation in the feeding and breeding of zooplankton related to the numerical balance of the zoo-phytoplankton community. ICES J Mar Sci 13:323–337. doi: 10.1093/icesjms/13.3.323 CrossRefGoogle Scholar
  25. Goodman DK (1987) Dinoflagellate cysts in ancient marine and modern marine sediments. In: Taylor FJR (ed) The biology of dinoflagellates. Blackwell, Oxford, pp 649–722Google Scholar
  26. Guillard RRL (1975) Culture of Phytoplankton for feeding marine invertebrates. Culture of marine invertebrate animals. Springer, US, pp 29–60CrossRefGoogle Scholar
  27. Heuschele J, Ceballos S, Borg CM, Bjærke O, Isari S, Lasley-Rasher R, Lindehoff E, Souissi A, Souissi S, Titelman J (2014) Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment. Mar Biol 161(7):1653–1666. doi: 10.1007/s00227-014-2449-z CrossRefGoogle Scholar
  28. Huntley M, Brooks ER (1982) Effects of age and food availability on diel vertical migration of Ditylum brightwellii. Mar Biol 71:23–31. doi: 10.1007/BF00396989 CrossRefGoogle Scholar
  29. Jakobsen HH, Strom SL (2004) Circadian cycles in growth and feeding rates of heterotrophic protist plankton. Limnol Oceanogr 49(6):1915–1922CrossRefGoogle Scholar
  30. Jauzein C, Collos Y, Laabir M, Vaquer A (2011) Dark metabolism and carbon–nitrogen uncoupling in the toxic dinoflagellate Alexandrium catenella (Dinophyceae). Harmful Algae 11:73–80. doi: 10.1016/j.hal.2011.08.002 CrossRefGoogle Scholar
  31. Landry MR, Hassett R (1982) Estimating the grazing impact of marine microzooplankton. Mar Biol 67(3):283–288CrossRefGoogle Scholar
  32. Liu H, Nolla H, Campbell L (1997) Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat Microb Ecol 12:39–47. doi: 10.3354/ame012039 CrossRefGoogle Scholar
  33. Lowe CD, Keeling PJ, Martin LE, Slamovits C, Watts PC, Montagnes DJ (2010) Who is Oxyrrhis marina? Morphological and phylogenetic studies on an unusual dinoflagellate. J Plankton Res 33(4):555–567. doi: 10.1093/plankt/fbq110 CrossRefGoogle Scholar
  34. Mackas D, Bohrer R (1976) Fluorescence analysis of zooplankton gut contents and an investigation of diel feeding patterns. J Exp Mar Biol Ecol 25:77–85CrossRefGoogle Scholar
  35. Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1(4):493–509Google Scholar
  36. Neveux, J, Dupouy C, Blanchot J, Le Bouteiller A, Landry MR, Brown SL (2003) Diel dynamics of chlorophylls in high-nutrient, low-chlorophyll waters of the equatorial Pacific (180 °): interactions of growth, grazing, physiological responses, and mixing. J Geophys Res Ocean 108(C12). doi: 10.1029/2000JC000747
  37. Ng WHA, Liu H (2015) Diel variation of the cellular carbon to nitrogen ratio of Chlorella autotrophica (Chlorophyta) growing in phosphorus- and nitrogen-limited continuous cultures. J Phycol 51:82–92. doi: 10.1111/jpy.12254 CrossRefGoogle Scholar
  38. Paasche E (1968) Marine plankton algae grown with light-dark cycles. II. Ditylum brightwellii and Nitzschia turgidula. Physiol Plant 21:66–77. doi: 10.1111/j.1399-3054.1968.tb07231.x CrossRefGoogle Scholar
  39. Peruyeva YG (1977) Some experimental data on the fourth copepodid stage of Calanus glacialis Jaschnov. Quantitative composition of the food. Oceanology 17:587–590Google Scholar
  40. Prézelin BB (1992) Diel periodicity in phytoplankton productivity. In: Berman T, Gons HJ, Mur LR (eds) The daily growth cycle of phytoplankton. Springer, The Netherlands, pp 1–35Google Scholar
  41. Putzeys S, Hernández-León S (2005) A model of zooplankton diel vertical migration off the Canary Islands: implication for active carbon flux. J Sea Res 53:213–222. doi: 10.1016/j.seares.2004.12.001 CrossRefGoogle Scholar
  42. Saiz E, Alcaraz M (1990) Pigment gut contents of copepods and deep phytoplankton maximum in the Western Mediterranean. J Plankton Res 12:665–672CrossRefGoogle Scholar
  43. Saiz E, Calbet A (2011) Copepod feeding in the ocean: scaling patterns, composition of their diet and the bias of estimates due to microzooplankton grazing during incubations. Hydrobiologia 666:181–196. doi: 10.1007/s10750-010-0421-6 CrossRefGoogle Scholar
  44. Saiz E, Rodriguez V, Alcaraz M (1992) Spatial distribution and feeding rates of Centropages typicus in relation to frontal hydrographic structures in the Catalan Sea (Western Mediterranean). Mar Biol 112:49–56. doi: 10.1007/BF00349727 CrossRefGoogle Scholar
  45. Saiz E, Tiselius P, Jonsson PR, Verity P, Paffenhöfer G (1993) Experimental records of the effects of food patchiness and predation on egg production of Acartia tonsa. Limnol Ocean 38(2):280–289CrossRefGoogle Scholar
  46. Saiz E, Sabatés A, Gili JM (2014) The zooplankton. In: Goffredo S, Dubinsky Z (eds) The Mediterranean sea. Springer, The Netherlands, pp 183–211CrossRefGoogle Scholar
  47. Schmoker C, Hernandez-Leon S, Calbet A (2013) Microzooplankton grazing in the oceans: impacts, data variability, knowledge gaps and future directions. J Plankton Res 35:691–706. doi: 10.1093/plankt/fbt023 CrossRefGoogle Scholar
  48. Stearns D (1983) Control of nocturnal vertical migration in the calanoid copepod Acartia tonsa Dana in the Newport River Estuary, North Carolina. Ph. D. thesis, Department of Zoology, Duke University, p 360Google Scholar
  49. Stramski D, Reynolds RA (1993) Diel variations in the optical properties of a marine diatom. Limnol Ocean 38:1347–1364CrossRefGoogle Scholar
  50. Strom S (2001) Light-aided digestion, grazing and growth in herbivorous protists. Aquat Microb Ecol 23:253–261. doi: 10.3354/ame023253 CrossRefGoogle Scholar
  51. Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. ICES J Mar Sci 18:287–295. doi: 10.1093/icesjms/18.3.287 CrossRefGoogle Scholar
  52. Sweeney BM, Hastings J (1958) Rhythmic cell division in populations of Gonyaulax polyedra. J Protozool 3:217–224. doi: 10.1111/j.1550-7408.1958.tb02555.x CrossRefGoogle Scholar
  53. Tarangkoon W, Hansen P (2011) Prey selection, ingestion and growth responses of the common marine ciliate Mesodinium pulex in the light and in the dark. Aquat Microb Ecol 62:25–38. doi: 10.3354/ame01455 CrossRefGoogle Scholar
  54. Tiselius P, Hansen B, Jonsson P, Kiørboe T, Nielsen TG, Piontkovski S, Saiz E (1995) Can we use laboratory-reared copepods for experiments? A comparison of feeding behaviour and reproduction between a field and a laboratory population of Acartia tonsa. ICES J Mar Sci J Conseil 52(3–4):369–376CrossRefGoogle Scholar
  55. Vaulot D, Marie D (1999) Diel variability of photosynthetic picoplankton in the equatorial Pacific. J Geophys Res 104:3297–3310CrossRefGoogle Scholar
  56. Vaulot D, Marie D, Olson RJ, Chisholm SW (1995) Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268(5216):1480CrossRefGoogle Scholar
  57. Watts PC, Martin LE, Kimmance SA, Montagnes DJ, Lowe CD (2011) The distribution of Oxyrrhis marina: a global disperser or poorly characterized endemic? J Plankton Res 33(4):579–589. doi: 10.1093/plankt/fbq148 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institut de Ciències del Mar (CSIC)BarcelonaSpain

Personalised recommendations