Skip to main content

Advertisement

Log in

Exudates of the green alga Ulvaria obscura (Kützing) affect larval development of the sand dollar Dendraster excentricus (Eschscholtz) and the Pacific oyster Crassostrea gigas (Thunberg)

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Accumulations of green macroalgae (green tides) are becoming increasingly common in many coastal habitats and substances released by these blooms may impact other organisms. In the northeastern Pacific, a dominant contributor to green tides is Ulvaria obscura, an alga that produces dopamine which affects a variety of physiological processes and can trigger metamorphosis in marine invertebrates. Eggs, embryos, and larvae of Pacific oysters (Crassostrea gigas) and sand dollars (Dendraster excentricus) were exposed to U. obscura exudates and dopamine to determine how exposure affects fertilization, development, and morphology. Exposing eggs to these compounds had no significant effect on fertilization of C. gigas and limited impact on D. excentricus, relative to unexposed controls. Early embryos exposed to the compounds developed successfully, but the resulting C. gigas veligers had larger shells and the D. excentricus gastrulae had shorter archenterons. When exposed to dopamine, C. gigas veligers had smaller shells, while larval arms of D. excentricus were significantly shorter relative to unexposed controls. Results indicate that compounds released by U. obscura affect development differently between invertebrate species and among developmental stages. The stage-specific responses likely result from changes in structure and metabolic activity at different life history stages, as well as changes in the localization and function of dopamine and dopamine receptors that occur during larval development. The changes in larval morphology and function induced by compounds released by marine macroalgae could ultimately impact the ability of larvae to feed and survive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams DK, Sewell MA, Angerer RC, Angerer LM (2011) Rapid adaptation to food availability by a dopamine-mediated morphogenetic response. Nat Commun 2:592

    Article  Google Scholar 

  • Allen JD, Pechenik JA (2010) Understanding the effects of low salinity on fertilization success and early development in the sand dollar Echinarachnius parma. Biol Bull 218:189–199

    Article  Google Scholar 

  • Beiras R, Widdows J (1995a) Effect of the neurotransmitters dopamine, serotonin and norepinephrine on the ciliary activity of mussel (Mytilus edulis) larvae. Mar Biol 122:597–603

    Article  CAS  Google Scholar 

  • Beiras R, Widdows J (1995b) Induction of metamorphosis in larvae of the oyster Crassostrea gigas using neuroactive compounds. Mar Biol 123:327–334

    Article  CAS  Google Scholar 

  • Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radical Biol Med 13:391–405

    Article  CAS  Google Scholar 

  • Bisgrove BW, Burke RD (1987) Development of the nervous system of the pluteus larva of Strongylocentrotus droebachiensis. Cell Tissue Res 248:335–343

    Article  Google Scholar 

  • Boidron-Metairon IF (1988) Morphological plasticity in laboratory-reared echinoplutei of Dendraster excentricus (Eschscholtz) and Lytechinus variegatus (Lamarck) in response to food conditions. J Exp Mar Biol Ecol 119:31–41

    Article  Google Scholar 

  • Bonar DB, Coon SL, Walch M, Weiner RM, Fitt W (1990) Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bull Mar Sci 46:484–498

    Google Scholar 

  • Braubach OR, Dickinson AJG, Evans CCE, Croll RP (2006) Neural control of the velum in larvae of the gastropod, Ilyanassa obsoleta. J Exp Biol 209:4676–4689

    Article  Google Scholar 

  • Burke RD (1983a) Neural control of metamorphosis in Dendraster excentricus. Biol Bull 164:176–188

    Article  Google Scholar 

  • Burke RD (1983b) Development of the larval nervous system of the sand dollar, Dendraster excentricus. Cell Tissue Res 229:145–154

    Article  CAS  Google Scholar 

  • Buznikov GA, Shmukler YB (1981) Possible role of “prenervous” neurotransmitters in cellular interactions of early embryogenesis: a hypothesis. Neurochem Res 6:55–68

    Article  CAS  Google Scholar 

  • Buznikov GA, Shmukler YB, Lauder JM (1996) From oocyte to neuron: do neurotransmitters function in the same way throughout development? Cell Mol Neurobiol 16:533–559

    Article  Google Scholar 

  • Buznikov GA, Shmukler YB, Lauder JM (1999) Changes in the physiological roles of neurotransmitters during individual development. Neurosci Behav Physiol 29:11–21

    Article  CAS  Google Scholar 

  • Byrne M, Soars N, Selvakumaraswamy P, Dworjanyn SA, Davis AR (2009) Sea urchin fertilization in a warm acidified and high pCO2 ocean across a range of sperm densities. Mar Envir Res 69:234–239

    Article  Google Scholar 

  • Chan KYK, Grünbaum D, O’Donnell MJ (2011) Effects of ocean-acidification-induced morphological changes on larval swimming and feeding. J Exp Biol 214:3857–3867

    Article  Google Scholar 

  • Coon SL, Bonar DB (1986) Norepinephrine and dopamine content of larvae and spat of the Pacific oyster, Crassostrea gigas. Biol Bull 171:632–639

    Article  CAS  Google Scholar 

  • Daniels EW, Longwell AC, McNiff JM, Wolfgang RW (1973) Ultrastructure of oocytes from the American oyster Crassostrea virginica Gmelin. Trans Amer Microscop Soc 92:337–349

    Article  CAS  Google Scholar 

  • Dinnel PA, Pagano GG, Oshida PS (1988) A sea urchin test system for marine environmental monitoring. In: Burke RD, Mladenov PV, Lambert P, Parsley RL (eds) Echinoderm biology. Balkema, Rotterdam, pp 611–619

    Google Scholar 

  • Dobretsov S, Qian P (2003) Pharmacological induction of larval settlement and metamorphosis in the blue mussel Mytilus edulis L. Biofouling 19:57–63

    Article  Google Scholar 

  • Epel D (1975) The program of and mechanisms of fertilization in the echinoderm egg. Amer Zool 15:507–522

    Article  Google Scholar 

  • Frankenstein G (2000) Blooms of ulvoids in Puget Sound. Puget Sound Water Quality Action Team, Olympia

    Google Scholar 

  • Graham DG (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol Pharm 14:633–643

    CAS  Google Scholar 

  • Halliwell B, Guetteridge JMC (2015) Free radicals in biology and medicine. Oxford University, Oxford

    Book  Google Scholar 

  • Harris RJ (1975) A primer of multivariate statistics. Lawrence Erlbaum Associates, Mahwah

    Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosciences 6:3009–3015

    Article  CAS  Google Scholar 

  • Havenhand JN, Guttler F-R, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:651–652

    Article  Google Scholar 

  • Hilbish TJ, Sasada K, Eyster LS, Pechenik JA (1999) Relationship between rates of swimming and growth in veliger larvae: genetic variance and covariance. J Exp Mar Biol Ecol 239:183–193

    Article  Google Scholar 

  • Inamdar MV, Kim T, Chung YK, Was AM, Xiang X, Wang CW, Takayama S, Lastoskie CM, Thomas FI, Sastry AM (2007) Assessment of sperm chemokinesis with exposure to jelly coats of sea urchin eggs and resact: a microfluidic experiment and numerical study. J Exp Biol 210:3805–3820

    Article  CAS  Google Scholar 

  • Ito S (2003) A chemist’s view of melanogenesis. Pigment Cell Res 16:230–236

    Article  CAS  Google Scholar 

  • Jameson GN, Zhang J, Jameson RF, Linert W (2004) Kinetic evidence that cysteine reacts with dopaminoquinone via reversible adduct formation to yield 5-cysteinyl-dopamine: an important precursor of neuromelanin. Org Biomol Chem 2:777–782

    Article  CAS  Google Scholar 

  • Johnson DA, Welsh BL (1985) Detrimental effects of Ulva lactuca (L.) exudates and low oxygen on estuarine crab larvae. J Exp Mar Biol Ecol 86:73–83

    Article  Google Scholar 

  • Keppel G, Wickens TD (2004) Design and analysis: a researchers handbook. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Kreiling JA, Jessen-Eller K, Miller J, Seegal RF, Reinisch CL (2001) Early development of the serotonergic and dopaminergic nervous system in Spisula solidissima (surf clam) larvae. Comp Biochem Physiol A 130:341–351

    Article  CAS  Google Scholar 

  • Leliaert F, Zhang X, Ye N, Malta EJ, Engelen AH, Mineur F, Verbruggen H, De Clerck O (2009) Research note: identity of the Qingdao algal bloom. Phycol Res 57:147–151

    Article  Google Scholar 

  • Lyons DA, Arvanitidis C, Blight AJ, Chatzinikolaou E, Guy-Haim T, Kotta J, Orav-Kotta H, Queirós AM, Rilov G, Somerfield PJ (2014) Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Glob Change Biol 20:2712–2724

    Article  Google Scholar 

  • Magre EJ (1974) Ulva lactuca L. negatively affects Balanus balanoides (L.) (Cirripedia Thoracica) in tidepools. Crustaceana 27:231–234

    Article  Google Scholar 

  • McGlathery KJ (2001) Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J Phycol 37:453–456

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Muñoz P, Huenchuguala S, Paris I, Segura-Aguilar J (2012) Dopamine oxidation and autophagy. Parkinson’s Dis 2012:920953

    Google Scholar 

  • Napolitano A, Manini P, d’Ischia M (2011) Oxidation chemistry of catecholamines and neuronal degeneration: an update. Curr Med Chem 18:1832–1845

    Article  CAS  Google Scholar 

  • Nelson TA, Gregg BC (2013) Determination of EC50 for normal oyster larval development in extracts from bloom-forming green seaweeds. Nautilus 127:156–159

    Google Scholar 

  • Nelson TA, Nelson AV, Tjoelker M (2003a) Seasonal and spatial patterns of “green tides” (ulvoid algal blooms) and related water quality parameters in the coastal waters of Washington state, USA. Bot Mar 46:263–275

    Article  Google Scholar 

  • Nelson TA, Lee DJ, Smith BC (2003b) Are “green tides” harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phycol 39:874–879

    Article  CAS  Google Scholar 

  • Nishihira J, Tachikawa H (1997) Theoretical study on the interaction between dopamine and its receptor by ab initiomolecular orbital calculation. J Theor Biol 185:157–163

    Article  CAS  Google Scholar 

  • O’Donnell MJ, Todgham AE, Sewell MA, Hammond LM, Ruggiero K, Fangue NA, Zippay ML, Hoffmann GE (2010) Ocean acidification alters skeletogenesis and gene expression in larval sea urchins. Mar Ecol Prog Ser 398:147–171

    Google Scholar 

  • Parker LM, Ross PM, O’Conner WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452

    Article  Google Scholar 

  • Pechenik JA, Li W, Cochrane DE (2002) Timing is everything: the effects of putative dopamine antagonists on metamorphosis vary with larval age and experimental duration in the prosobranch gastropod Crepidula fornicata. Biol Bull 202:137–147

    Article  CAS  Google Scholar 

  • Pires A, Hadfield MG (1991) Oxidative breakdown products of catecholamines and hydrogen peroxide induce partial metamorphosis in the nudibranch Phestilla sibogae Bergh (Gastropoda: Opisthobranchia). Biol Bull 180:310–317

    Article  CAS  Google Scholar 

  • Pires A, Coon SL, Hadfield MG (1997) Catecholamines and dihydroxyphenylalanine in metamorphosing larvae of the nudibranch Phestilla sibogae Bergh. J Comp Physiol 181:187–194

    Article  CAS  Google Scholar 

  • Podolsky RD (2004) Life-history consequences of investment in free-spawned eggs and their accessory coats. Am Nat 163:735–753

    Article  Google Scholar 

  • Ruesink JL, Linihan HS, Trimble AC, Heiman KW, Micheli F, Byers JE, Kay MC (2005) Introduction of nonnative oysters: ecosystem effects and restoration implications. Annu Rev Ecol Evol Sys 36:643–689

    Article  Google Scholar 

  • Shah Z, Sharma P, Vohora S (2003) Ginkgo biloba normalises stress-elevated alterations in brain catecholamines, serotonin and plasma corticosterone levels. Eur Neuropharm 13:321–325

    Article  CAS  Google Scholar 

  • Shapiro BM (1991) The control of oxidant stress at fertilization. Science 252:533–536

    Article  CAS  Google Scholar 

  • Smetacek V, Zingone A (2013) Green and golden seaweed tides on the rise. Nature 504:84–88

    Article  CAS  Google Scholar 

  • Smith JE, Runcie JW, Smith CM (2005) Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai’i. Mar Ecol Prog Ser 302:77–91

    Article  CAS  Google Scholar 

  • Stokes AH, Hastings TG, Vrana KE (1999) Cytotoxic and genotoxic potential of dopamine. J Neurosci Res 55:659–665

    Article  CAS  Google Scholar 

  • Strathmann MF (1987) Reproduction and development of marine invertebrates of the Northern Pacific Coast. University of Washington, Seattle and London

    Google Scholar 

  • Stumpp M, Hu M, Casties I, Reinhard S, Bleich M, Melzner F, Dupont S (2013) Digestion in sea urchin larvae impaired under ocean acidification. Nat Clim Chg 3:1044–1049

    Article  CAS  Google Scholar 

  • Teichberg M, Fox SE, Olsen YS, Valiela I, Martinetto P, Iribarne O, Muto EY, Petti MAV, Corbisier TN, Soto-Jiménez M, Páez-Osuna F, Castro P, Freitas H, Zitelli A, Cardinaletti M, Tagliapietra D (2010) Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob Chang Biol 16:2624–2637

    Google Scholar 

  • Teichberg M, Martinetto P, Fox SE (2012) Bottom-up versus top-down control of macroalgal blooms. In: Wiencke C, Bischof K (eds) Seaweed biology. Springer, Berlin, pp 449–467

    Chapter  Google Scholar 

  • Tocher RD, Craigie JS (1966) Enzymes of marine algae: II. Isolation and identification of 3-hydroxytyramine as the phenolase substrate in Monostroma fuscum. Can J Bot 44:605–608

    Article  CAS  Google Scholar 

  • Tocher RD, Meeuse BJD (1966) Enzymes of marine algae: I. Studies on phenolase in the green alga, Monostroma fuscum. Can J Bot 44:551–561

    Article  CAS  Google Scholar 

  • Turner E, Hager LJ, Shapiro BM (1988) Ovothiol replaces glutathione peroxidase as a hydrogen peroxide scavenger in sea urchin eggs. Science 242:939–941

    Article  CAS  Google Scholar 

  • Valiela I, McClelland J, Hauxwell J, Behr P, Hersh D, Foreman K (1997) Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol Oceanogr 42:1105–1118

    Article  Google Scholar 

  • Van Alstyne KL, Nelson AV, Vyvyan JR, Cancilla DA (2006) Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura. Oecologia 148:304–311

    Article  Google Scholar 

  • Van Alstyne KL, Anderson KJ, Winans AK, Gifford S (2011) Dopamine release by the green alga Ulvaria obscura after simulated immersion by incoming tides. Mar Biol 158:2087–2094

    Article  CAS  Google Scholar 

  • Van Alstyne KL, Anderson KJ, van Hees DH, Gifford S (2013) Dopamine release by Ulvaria obscura (Chlorophyta): environmental triggers and impacts on photosynthesis, growth, and survival of the releaser. J Phycol 49:719–727

    Article  Google Scholar 

  • Van Alstyne KL, Harvey EL, Cataldo M (2014) Effects of dopamine, a compound released by the green-tide macroalga Ulvaria obscura (Chlorophyta), on marine algae and invertebrate larvae and juveniles. Phycologia 53:195–202

    Article  Google Scholar 

  • Van Alstyne KL, Nelson TA, Ridgway RL (2015) Environmental chemistry and chemical ecology of “green tide” seaweed blooms. Integr Comp Biol 55:518–532

    Article  Google Scholar 

  • Van Alstyne KL, Ridgway R, Nelson T (2017) Neurotransmitters in marine and freshwater algae. In: Ramakrishna A, Roshchina V (eds) Neurotransmitters in plants: possible physiological functions. Taylor and Francis (CRC Press), ‎Boca Raton (in press)

    Google Scholar 

  • van Hees DH, Van Alstyne KL (2013) Effects of emersion, temperature, dopamine, and hypoxia on the accumulation of extracellular oxidants surrounding the bloom-forming seaweeds Ulva lactuca and Ulvaria obscura. J Exp Mar Biol Ecol 448:207–213

    Article  Google Scholar 

  • Vargas CA, Aguilera VM, Martin VS, Manriquez PH, Nararro JM, Duarte C, Torres R, Lardies MA, Lagos NA (2015) CO2-driven ocean acidification disrupts the filter feeding behavior in Chilean gastropod and bivalve species from different geographic localities. Est Coast 38:1163–1177

    Article  CAS  Google Scholar 

  • Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray WW, Miller CA, Gimenez I, Hutchinson G (2015) Ocean acidification has multiple modes of action on bivalve larvae. PLoS One. doi:10.1371/journal.pone.0128376

    Google Scholar 

  • Wang C, Yu R, Zhou M (2011) Acute toxicity of live and decomposing green alga Ulva (Enteromorpha) prolifera to abalone Haliotis discus hannai. Chin J Oceanol Limnol 29:541–546

    Article  CAS  Google Scholar 

  • Whitehead R, Ferrer J, Javitch J, Justice J (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251

    Article  CAS  Google Scholar 

  • Ye N, Zhang X, Mao Y, Liang C, Xu D, Zou J, Zhuang Z, Wang Q (2011) ‘Green tides’ are overwhelming the coastline of our blue planet: taking the world’s largest example. Ecol Res 26:477–485

    Article  Google Scholar 

Download references

Acknowledgements

This work was possible with funding provided by National Science Foundation Grant #IOS 11189446, Huxley College of the Environment, Western Washington University, Shannon Point Marine Center and Anchor QEA. Special thanks to Shawn M. Arellano, Gene McKeen, Sue-Ann Gifford, Nathan T. Schwarck, James Dimond, Jeanette Redmond, Kerri Fredrickson, Mandy Chan, Kim Diep, Horng-Yuh Lee, and Anna-Mai Christmas. Ed Jones (Taylor Shellfish Farms) provided oysters for our experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yolimar Rivera Vázquez.

Ethics declarations

Conflict of interest

Yolimar Rivera Vázquez, Kathryn L. Van Alstyne and Brian L. Bingham, the authors of the manuscript, declare that they have no conflicts of interests related to this research or its publication in Marine Biology.

Ethical approval

All experiments were performed in accordance with institutional and national guidelines for the use of animals in scientific experiments.

Additional information

Responsible Editor: S. Shumway.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera Vázquez, Y., Van Alstyne, K.L. & Bingham, B.L. Exudates of the green alga Ulvaria obscura (Kützing) affect larval development of the sand dollar Dendraster excentricus (Eschscholtz) and the Pacific oyster Crassostrea gigas (Thunberg). Mar Biol 164, 194 (2017). https://doi.org/10.1007/s00227-017-3228-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3228-4

Navigation