Skip to main content

Advertisement

Log in

Habitat selection of foraging chick-rearing European shags in contrasting marine environments

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Impacts of anthropogenic activities on coastal seabirds might be extensive, especially in the breeding season. Identifying important foraging areas and associated habitats is important for a proper management of seabirds. To identify habitat characteristics driving the selection of foraging sites of breeding European shags Phalacrocorax aristotelis, this study used tracking data (GPS- and TDR-loggers), from 282 individual birds comprising 905 foraging trips and 27,303 dives with known locations, to create habitat selection models. To explore possible effects of regional differences in habitat on foraging behavior, the study was performed at two Norwegian colonies, Sklinna in the Norwegian Sea (65°N, 11°E) and Hornøya in the Barents Sea (70°N, 31°E), with distinct differences in seascape structure and habitat availability. Shags at Sklinna foraged further away from the colony than those at Hornøya but diving depth and duration were similar at the two colonies. In both colonies, sea depth was an important predictor of habitats selected by chick-rearing shags during foraging, with birds preferring shallow depths. At Sklinna, shags also selected for flat areas with high probability of kelp forest occurrence. There was no difference in trip length and duration between sexes, but males dived deeper than females in both colonies. This suggests that males and females might utilize different microhabitats within the same foraging area. The study discusses the application of habitat selection modeling to identify important foraging areas for coastal seabirds, and how this may contribute to the management, conservation and assessment of impacts of human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen JM, Wiersma YF, Stenson GB, Hammill MO, Rosing-Asvid A, Skern-Mauritzen M (2012) Habitat selection by hooded seals (Cystophora cristata) in the Northwest Atlantic Ocean. ICES J Mar Sci 69:1–13. doi:10.1093/icesjms/fss133

    Article  Google Scholar 

  • Barrett RT (1991) Shags (Phalacrocorax aristotelis L.) as potential samplers of juvenile saithe Pollachius virens (L.) stocks in northern Norway. Sarsia 76:153–156. doi:10.1080/00364827.1991.10413470

    Article  Google Scholar 

  • Barrett RT, Furness RW (1990) The prey and diving depths of seabirds on Hornøya, North Norway after a decrease in the Barents Sea Capelin stocks. Ornis Scand 21:179–186. doi:10.2307/3676777

    Article  Google Scholar 

  • Barrett RT, Røv N, Loen J, Montevecchi WA (1990) Diets of shags Phalacrocorax aristotelis and cormorants P. carbo in Norway and possible implications for gadoid stock recruitment. Mar Ecol Prog Ser 66:205–218

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Bekkby T, Erikstad L, Bakkestuen V, Bjørge A (2002) A landscape ecological approach to coastal zone applications. Sarsia 87:396–408. doi:10.1080/0036482021000155845

    Article  Google Scholar 

  • Bekkby T, Rinde E, Erikstad L, Bakkestuen V (2009a) Spatial predictive distribution modelling of the kelp species Laminaria hyperborea. ICES J Mar Sci 66:2106–2115. doi:10.1093/icesjms/fsp195

    Article  Google Scholar 

  • Bekkby T, Moy F, Kroglund T, Gitmark J, Walday M, Rinde E, Norderhaug KM (2009b) Identifying rocky seabed using GIS modelled predictor variables. Mar Geod 32:379–390. doi:10.1080/01490410903297816

    Article  Google Scholar 

  • Bekkby T, Moy F, Olsen H, Rinde E, Bodvin T, Bøe R, Steen H, Grefsrud ES, Espeland SSH, Pedersen A, Jørgensen NM (2013) The Norwegian Programme for mapping of marine habitats – providing knowledge and maps for ICZMP. In: Moksness E, Dahl E, Støttrup J (ed) Global challenges in integrated coastal zone management, Wiley-Blackwell. ISBN 978-0-470-65756-0

  • Birdlife International (2010) Marine Important Bird Areas toolkit: standardised techniques for identifying priority sites for conservation of seabirds at sea. Birdlife International, Cambridge

    Google Scholar 

  • Bivand RS, Pebesma E, Gomez-Rubio V (2013) Applied spatial data analysis with R, Second edition. Springer, NY. http://www.asdar-book.org/, http://www.asdar-book.org/

  • Bjørge A, Bekkby T, Bryant E (2002) Summer home range and habitat selection of harbour seal (Phoca vitulina) pups. Mar Mamm Sci 18:438–454. doi:10.1111/j.1748-7692.2002.tb01047.x

    Article  Google Scholar 

  • Bogdanova MI, Wanless S, Harris MP, Lindström J, Butler A, Newell MA, Sato K, Watanuki Y, Daunt F (2014) Among-year and within-population variation in foraging distribution of European shags Phalacrocorax aristotelis over two decades: implications for marine spatial planning. Biol Conserv 170:292–299. doi:10.1016/j.biocon.2013.12.025

    Article  Google Scholar 

  • Boyd C, Castillo R, Hunt GL Jr, Punt AE, VanBlaricom GR, Weimerskirch H, Bertrand S (2015) Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey. J Anim Ecol 84:1575–1588. doi:10.1111/1365-2656.12409

    Article  Google Scholar 

  • Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioural ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35. doi:10.1007/s00265-010-1029-6

    Article  Google Scholar 

  • Casaux R, Favero M, Silva P, Baroni A (2001) Sex differences in diving depths and diet of Antarctic shags at the South Shetland Islands. J F Ornithol 72:22–29

    Article  Google Scholar 

  • Cook TR, Lescröel A, Cherel Y, Kato A, Bost C-A (2013) Can foraging ecology drive the evolution of body size in a diving endotherm? PLoS One 8(2):e56297. doi:10.1371/journal.pone.0056297

    Article  CAS  Google Scholar 

  • Crain CM, Halpern BS, Beck MW, Kappel CV (2009) Understanding and managing human threats to the coastal marine environment. Ann N Y Acad Sci 1162:39–62. doi:10.1111/j.1749-6632.2009.04496.x

    Article  Google Scholar 

  • Cramp S, Simmons KEL (1977) The birds of the Western Palearctic, vol I. Oxford University Press, Oxford

    Google Scholar 

  • Crowder L, Norse E (2008) Essential ecological insights for marine ecosystem-based management and marine spatial planning. Mar Policy 32:772–778

    Article  Google Scholar 

  • Daunt F, Bogdanova M, McDonald C, Wanless S (2015) Determining important marine areas used by European shag breeding on the Isle of May that might merit consideration as additional SPAs (2012). JNCC Report No 556. JNCC, Peterborough

  • Drent RH, Daan S (1980) The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252. doi:10.5253/arde.v68.p225

    Google Scholar 

  • ESRI (2011) ArcGIS desktop: Release 10. Environmental Systems Research Institute, Redlands

    Google Scholar 

  • Fauchald P, Anker-Nilssen T, Barrett RT, Bustnes JO, Bårdsen BJ, Christensen-Dalsgaard S, Descamps S, Engen S, Erikstad KE, Hanssen SA, Lorentsen S-H, Moe B, Reiertsen TK, Strøm H, Systad GH (2015) The status and trends of seabirds breeding in Norway and Svalbard. NINA Report 1151. NINA, Trondheim, p 84

    Google Scholar 

  • Fortin M, Bost C-A, Maes P, Barbraud C (2013) The demography and ecology of the European shag Phalacrocorax aristotelis in Mor Braz, France. Aquat Living Resour 26:179–185. doi:10.1051/alr/2012041

    Article  Google Scholar 

  • Furness RW, Wade HM, Robins AMC, Masden EA (2012) Assessing the sensitivity of seabird populations to adverse effects from tidal stream turbines and wave energy devices. ICES J Mar Sci 69:1466–1479. doi:10.1093/icesjms/fss131

    Article  Google Scholar 

  • Furness RW, Wade HM, Masden EA (2013) Assessing vulnerability of marine bird populations to offshore wind farms. J Environ Manag 119:56–66. doi:10.1016/j.jenvman.2013.01.025

    Article  Google Scholar 

  • Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137. doi:10.3354/meps08212

    Article  Google Scholar 

  • Grémillet D, Lewis S, Drapeau L, van Der Lingen CD, Huggett JA, Coetzee JC, Verheye HM, Daunt F, Wanless S, Ryan PG (2008) Spatial match-mismatch in the Benguela upwelling zone: should we expect chlorophyll and sea-surface temperature to predict marine predator distributions? J App Ecol 45:610–621. doi:10.1111/j.1365-2664.2007.01447.x

    Article  Google Scholar 

  • Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D’Agrosa C, Bruno JF, Casey KS, Ebert C, Fox HE, Fujita R, Heinemann D, Lenihan HS, Madin EMP, Perry MT, Selig ER, Spalding M, Steneck R, Watson R (2008) A global map of human impact on marine ecosystems. Science 319(5865):948–952. doi:10.1126/science.1149345

    Article  CAS  Google Scholar 

  • Halpern BS, Ebert CM, Kappel CV, Madin EMP, Micheli F, Perry M, Selkoe KA, Walbridge S (2009) Global priority areas for incorporating land–sea connections in marine conservation. Conserv Lett. doi:10.1111/j.1755-263X.2009.00060.x

    Google Scholar 

  • Hillersøy G, Lorentsen SH (2012) Annual variation in the diet of breeding European shag (Phalacrocorax aristotelis) in Central Norway. Waterbirds 35:420–429. doi:10.1675/063.035.0306

    Article  Google Scholar 

  • Kato A, Watanuki Y, Nishiumi I, Kuroki M, Shaughnessy P, Naito Y (2000) Variation in foraging and parental behaviour of king cormorants. Auk 117:718–730. doi:10.2307/4089596

    Article  Google Scholar 

  • Langton R, Davies IM, Scott BE (2011) Seabird Conservation and tidal stream and wave power generation: information needs for predicting and managing potential impacts. Marine Policy 35:623–630. doi:10.1016/j.marpol.2011.02.002

    Article  Google Scholar 

  • Lascelles BG, Taylor PR, Miller MGR, Dias MP, Oppel S, Torres L, Hedd A, Le Corre M, Phillips RA, Shaffer SA, Weimerskirch H, Small C (2016) Applying global criteria to tracking data to define important areas for marine conservation. Divers Distrib 22:422–431. doi:10.1111/ddi.12411

    Article  Google Scholar 

  • Lorentsen SH, Sjøtun K, Grémillet D (2010) Multi-trophic consequences of kelp harvest. Biol Conserv 143:2054–2062. doi:10.1016/j.biocon.2010.05.013

    Article  Google Scholar 

  • Lorentsen SH, Anker-Nilssen T, Erikstad KE, Røv N (2015) Forage fish abundance is a predictor of timing of breeding and hatching brood size in a coastal seabird. Mar Ecol Prog Ser 519:209–220. doi:10.3354/meps11100

    Article  Google Scholar 

  • Luque SP (2007) Diving behaviour analysis in R. R News 7(3):8–14

    Google Scholar 

  • Mehl S (2015). Northeast Arctic saithe. In: Havforskningsrapporten 2015. Fisken og havet, særnr. 1–2015, p 184

  • Michelot C, Pinaud D, Fortin M, Maes P, Callard B, Leicher M, Barbraud C (2017) Seasonal variation in coastal marine habitat use by the European shag: insights from fine scale habitat selection modelling and diet. Deep-Sea Res II 141:224–236. doi:10.1016/j.dsr2.2017.04.001

    Article  Google Scholar 

  • Mitchell PI, Newton SF, Ratcliffe N, Dunn TE (2004) Seabird populations of Britain and Ireland. T. & A.D. Poyser, London

    Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. The Ohio State University Press, Columbus, pp 154–177

    Google Scholar 

  • Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5 (2). http://cran.r-project.ord/doc/Rnews/

  • Pethon P (1998) Aschehougs store fiskebok. Aschehoug. (In Norwegian), NY. http://www.asdar-book.org/

  • Quillfeldt P, Schroff S, van Noordwijk HJ, Michalik A, Ludynia K, Masello JF (2011) Flexible foraging behaviour of a sexually dimorphic deabird: large males do not always dive deep. Mar Ecol Prog Ser 428:271–287. doi:10.3354/meps09058

    Article  Google Scholar 

  • Ratcliffe N, Takahashi A, O’Sullivan C, Adlard S, Trathan P, Harris M, Wanless S (2013) The roles of sex, mass and individual specialisation in partitioning foraging-depth niches of a pursuit-diving predator. PLoS One 8(10):e79107. doi:10.1371/journal.pone.0079107

    Article  CAS  Google Scholar 

  • R Development Core Team (2016) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Redfern JV, Ferguson MC, Becker EA, Hyrenbach KD, Good C, Barlow J, Kaschner K, Baumgartner MF, Forney KA, Balance LT, Fauchald P, Halpin P, Hamazaki T, Pershing AJ, Qian SS, Read A, Reilly SB, Torres L, Werner F (2006) Techniques for cetacean-habitat modelling. Mar Ecol Prog Ser 310:271–295. doi:10.3354/meps310271

    Article  Google Scholar 

  • Rinde E, Christie H, Fagerli CW, Bekkby T, Gundersen H, Norderhaug KM, Hjermann DØ (2014) The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic. PLoS One 9(6):e100222. doi:10.1371/journal.pone.0100222

    Article  Google Scholar 

  • Sakshaug E, Bjørge A, Gulliksen B, Loeng H, Mehlum F (1994) The ecosystem Barents Sea (In Norwegian). Universitetsforlaget, Oslo. Norwegian title: Økosystem Barentshavet

  • Sato K, Daunt F, Watanuki Y, Takahashi A, Wanless S (2008) A new method to quantify prey acquisition in diving seabirds using wing stroke frequency. J Exp Biol 211:58–65. doi:10.1242/jeb.009811

    Article  Google Scholar 

  • Skjoldal HR (ed) (2004) The Norwegian Sea ecosystem. Tapir Academic Press, Trondheim

    Google Scholar 

  • Soanes LM, Arnould JPY, Dodd SG, Sumner MD, Green JA (2013) How many seabirds do we need to track to define home-range area? J App Ecol 50:671–679. doi:10.1111/1365-2664.12069

    Article  Google Scholar 

  • Soanes LM, Arnould JPY, Dodd SG, Milligan G, Green JA (2014) Factors affecting the foraging behaviour of the European shag: implications for seabird tracking studies. Mar Biol 161:1335–1348. doi:10.1007/s00227-014-2422-x

    Article  CAS  Google Scholar 

  • Soanes LM, Bright JA, Angel LP, Arnould JPY, Bolton M, Berlincourt M, Lascelles B, Owen E, Simon-Bouhet B, Green JA (2016) Defining marine important bird areas: testing the foraging radius approach. Biol Conserv 196:69–79. doi:10.1016/j.biocon.2016.02.007

    Article  Google Scholar 

  • van der Kooij J, Scott BE, Mackinson S (2008) The effects of environmental factors on daytime sandeel distribution and abundance on the Dogger Bank. J Sea Res 60:201–209. doi:10.1016/j.seares.2008.07.003

    Article  Google Scholar 

  • Velando A, Freire J (1999) Intercolony and seasonal differences in the breeding diet of European Shags on the Galician coast (NW Spain). Mar Ecol Prog Ser 188:225–236. doi:10.3354/meps188225

    Article  Google Scholar 

  • Velando A, Munilla I (2011) Disturbance to a foraging seabird by sea-based tourism: implications for reserve management in marine protected areas. Biol Conserv 144:1167–1174. doi:10.1016/j.biocon.2011.01.004

    Article  Google Scholar 

  • Wade HM, Masden EA, Jackson AC, Thaxter CB, Burton NHK, Bouten W, Furness RW (2014) Great skua (Stercorarius skua) movements at sea in relation to marine renewable energy developments. Mar Environ Res 101:69–80. doi:10.1016/j.marenvres.2014.09.003

    Article  CAS  Google Scholar 

  • Wakefield ED, Phillips RA, Matthiopoulos J (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Mar Ecol Prog Ser 391:165–182. doi:10.3354/meps08203

    Article  Google Scholar 

  • Wanless S, Harris M (1997) Shag. The birds of the Western Palearctic update 1:1–13

  • Wanless S, Harris MP, Morris JA (1991) Foraging range and feeding locations of shags Phalacrocorax aristotelis during chick rearing. IBIS 133:30–36. doi:10.1111/j.1474-919X.1991.tb04806.x

    Article  Google Scholar 

  • Wanless S, Harris MP, Burger AE, Buckland ST (1997) Use if time-depth recorders for estimating depth and diving performance of European shags. J F Ornithol 68:547–561

    Google Scholar 

  • Warwick-Evans VC, Atkinson PW, Robinson LA, Green JA (2016) Predictive modelling to identify near-shore fine-scale seabird distributions during the breeding season. PLoS One 11(3):e0150592. doi:10.1371/journal.pone.0150592

    Article  Google Scholar 

  • Watanuki Y, Daunt F, Takahashi A, Newell M, Wanless S, Sato K, Miyazaki N (2008) Microhabitat use and prey capture of a bottom-feeding top predator, the European shag, shown by camera loggers. Mar Ecol Prog Ser 356:283–293. doi:10.3354/meps07266

    Article  Google Scholar 

  • Wearmouth VJ, Sims DW (2008) Sexual segregation of marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. Adv Mar Biol 54:107–170. doi:10.1016/S0065-2881(08)00002-3

    Article  Google Scholar 

  • Wood SN (2011) Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J R Statist Soc B 73(1):3–36. doi:10.1111/j.1467-9868.2010.00749.x

    Article  Google Scholar 

  • Wright PJ, Jensen H, Tuck I (2000) The influence of sediment type on the distribution of the lesser sandeel, Ammodytes marinus. J Sea Res 44:243–256. doi:10.1016/S1385-1101(00)00050-2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank all field assistants at Sklinna and Hornøya for invaluable help. We also thank R. Barrett for valuable comments on earlier drafts of the manuscript, and S.P. Luque for valuable help with the DiveMove analysis. The study was funded through SEAPOP (www.seapop.no), CEDREN (www.cedren.no), the Norwegian Environment Agency, the Norwegian Water Resources and Energy Directorate and the Norwegian Institute for Nature Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Christensen-Dalsgaard.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted. The study was approved by the Norwegian Animal Research Authority (FOTS ID: 3238, 5148 and 8616). This article does not contain any studies with human participants performed by any of the authors.

Additional information

Responsible Editor: V. Paiva.

Reviewed by C. Barbraud and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1026 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christensen-Dalsgaard, S., Mattisson, J., Bekkby, T. et al. Habitat selection of foraging chick-rearing European shags in contrasting marine environments. Mar Biol 164, 196 (2017). https://doi.org/10.1007/s00227-017-3227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3227-5

Navigation