Marine Biology

, 164:204 | Cite as

Implications of location accuracy and data volume for home range estimation and fine-scale movement analysis: comparing Argos and Fastloc-GPS tracking data

  • J. A. Thomson
  • L. Börger
  • M. J. A. Christianen
  • N. Esteban
  • J.-O. Laloë
  • G. C. Hays
Original paper

Abstract

The advent of Fastloc-GPS is helping to transform marine animal tracking by allowing the collection of high-quality location data for species that surface only briefly. We show how the improved location accuracy of Fastloc-GPS compared to Argos tracking is expected to lead to far more accurate home range estimates, particularly for animals moving over the scale of a few km. We reach this conclusion using simulated data and home range estimates derived from empirical tracking data for green sea turtles (Chelonia mydas) equipped with Argos linked Fastloc-GPS tags at three different foraging areas (western Indian Ocean, Western Australia, and Caribbean). Poor-quality Argos locations (e.g., location classes A, B) produced home range estimates ranging from 10 to 100 times larger than those derived from Fastloc-GPS data, whereas high-quality Argos locations (location classes 1–3) produced home range estimates that were generally comparable to those derived from Fastloc-GPS data. However, the limited number of Argos class 1–3 locations obtained for all three turtles—an average of 14.6 times more Fastloc-GPS locations were obtained compared to Argos class 1–3 locations—resulted in blurred patterns of space use. In contrast, the high volume of Fastloc-GPS locations revealed fine-scale movements in striking detail (i.e., use of discrete patches separated by just a few 100 m). We recommend careful consideration of the effects of location accuracy and data volume when developing sampling regimes for marine tracking studies and make recommendations regarding how sampling can be standardized to facilitate meaningful spatial and temporal comparisons of space use.

References

  1. Bjorndal KA (1980) Nutrition and grazing behaviour of the green turtle Chelonia mydas. Mar Biol 56:147–154. doi:10.1007/BF00397131 CrossRefGoogle Scholar
  2. Börger L, Franconi N, De Michele G, Gantz A, Meschi F, Manica A, Lovari S, Coulson T (2006a) Effects of sampling regime on the mean and variance of home range estimates. J Anim Ecol 75:1393–1405. doi:10.1111/j.1365-2656.2006.01164.x CrossRefGoogle Scholar
  3. Börger L, Franconi N, Ferretti F, Meschi F, De Michele G, Gantz A, Coulson T (2006b) An integrated approach to identify spatiotemporal and individual-level determinants of home range size. Am Nat 168:471–485. doi:10.1086/507883 CrossRefGoogle Scholar
  4. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis. Clarendon, OxfordGoogle Scholar
  5. Boyd JD, Brightsmith DJ (2013) Error properties of Argos satellite telemetry locations using least squares and Kalman filtering. PLoS One. doi:10.1371/journal.pone.0063051 Google Scholar
  6. Bradshaw CJA, Sims DW, Hays GC (2007) Measurement error causes scale-dependent threshold erosion of biological signals in animal movement data. Ecol Appl 17:628–638CrossRefGoogle Scholar
  7. Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519. doi:10.1016/j.ecolmodel.2006.03.017 CrossRefGoogle Scholar
  8. Christiansen F, Esteban N, Mortimer JA, Dujon AM, Hays GC (2017) Diel and seasonal patterns in activity and home range size of green turtles on their foraging grounds revealed by extended Fastloc-GPS tracking. Mar Biol 164:10. doi:10.1007/s00227-016-3048-y CrossRefGoogle Scholar
  9. Cooke SJ (2008) Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endanger Species Res 4:165–185. doi:10.3354/esr00063 CrossRefGoogle Scholar
  10. Costa DP, Robinson PW, Arnould JPY, Harrison A-L, Simmons SE, Hassrick JL, Hoskins AJ, Kirkman SP, Oosthuizen H, Villegas-Amtmann S, Crocker DE (2010) Accuracy of ARGOS locations of pinnipeds at-sea estimated using Fastloc GPS. PLoS One. doi:10.1371/journal.pone.0008677 Google Scholar
  11. Dujon AM, Lindstrom RT, Hays GC (2014) The accuracy of Fastloc-GPS locations and implications for animal tracking. Methods Ecol Evol 5:1162–1169. doi:10.1111/2041-210X.12286 CrossRefGoogle Scholar
  12. Esteban N, Mortimer JA, Hays GC (2017) How numbers of nesting sea turtles can be over-estimated by nearly a factor of two. Proc R Soc Lond B 284:20162581. doi:10.1098/rspb.2016.2581 CrossRefGoogle Scholar
  13. Evans K, Baer H, Bryant E, Holland M, Rupley T, Wilcox C (2011) Resolving estimation of movement in a vertically migrating pelagic fish: does GPS provide a solution? J Exp Mar Biol Ecol 398:9–17. doi:10.1016/j.jembe.2010.11.006 CrossRefGoogle Scholar
  14. Fieberg J, Börger L (2012) Could you please phrase “home range” as a question? J Mamm 93:890–902. doi:10.1644/11-MAMM-S-172.1 CrossRefGoogle Scholar
  15. Frair JL, Fieberg J, Hebblewhite M, Cagnacci F, DeCesare NJ, Pedrotti L (2010) Resolving issues of imprecise and habitat-biased locations in ecological analyses using GPS telemetry data. Phil Trans R Soc B 365:2187–2200. doi:10.1098/rstb.2010.0084 CrossRefGoogle Scholar
  16. Fujisaki I, Hart KM, Sartain-Iverson AR (2016) Habitat selection by green turtles in a spatially heterogeneous benthic landscape in Dry Tortugas National Park, Florida. Aquat Biol 24:185–199. doi:10.3354/ab00647 CrossRefGoogle Scholar
  17. Fuller WJ, Broderick AC, Phillips RA, Silk JRD, Godley BJ (2008) Utility of geolocating light loggers for indicating at-sea movements in sea turtles. Endanger Species Res 4:139–146. doi:10.3354/esr00048 CrossRefGoogle Scholar
  18. Godley BJ, Blumenthal JM, Broderick AC, Coyne MS, Godfrey MH, Hawkes LA, Witt MJ (2008) Satellite tracking of sea turtles: where have we been and where do we go next? Endanger Species Res 4:3–22. doi:10.3354/esr00060 CrossRefGoogle Scholar
  19. Harris S, Cresswell WJ, Forde PG, Trewehella WJ, Woollard T, Wray S (1995) Home-range analysis using radio-tracking data—a review of problems and techniques particularly as applied to the study of mammals. Mamm Rev 20:97–123. doi:10.1111/j.1365-2907.1990.tb00106.x CrossRefGoogle Scholar
  20. Hawkes LA, Witt MJ, Broderick AC, Coker JW, Coyne MS, Dodd M, Frick MG, Godfrey MH, Griffin DB, Murphy SR, Murphy TM, Williams KL, Godley BJ (2011) Home on the range: spatial ecology of loggerhead turtles in Atlantic waters of the USA. Divers Distrib 17:624–640. doi:10.1111/j.1472-4642.2011.00768.x CrossRefGoogle Scholar
  21. Hays GC, Åkesson S, Godley BJ, Luschi P, Santidrian P (2001) The implications of location accuracy for the interpretation of satellite-tracking data. Anim Behav 61:1035–1040. doi:10.1006/anbe.2001.1685 CrossRefGoogle Scholar
  22. Hays GC, Mortimer JA, Ierodiaconou D, Esteban N (2014) Use of long-distance migration patterns of an endangered species to inform conservation planning for the world’s largest marine protected area. Conserv Biol 28:1636–1644. doi:10.1111/cobi.12325 CrossRefGoogle Scholar
  23. Hays GC, Ferreira LC, Sequeira AMM, Meekan MG, Duarte CM, Bailey H, Bailleul F, Bowen WD, Caley MJ, Costa DP, Eguíluz VM, Fossette S, Friedlaender AS, Gales N, Gleiss AC, Gunn J, Harcourt R, Hazen EL, Heithaus MR, Heupel M, Holland K, Horning M, Jonsen I, Kooyman GL, Lowe CG, Madsen PT, Marsh H, Phillips RA, Righton D, Ropert-Coudert Y, Sato K, Shaffer SA, Simpfendorfer CA, Sims DW, Skomal G, Takahashi A, Trathan PN, Wikelski M, Womble JN, Thums M (2016) Key questions in marine megafauna movement ecology. Trends Ecol Evol 6:463–475. doi:10.1016/j.tree.2016.02.015 CrossRefGoogle Scholar
  24. Hazel J (2009) Evaluation of fast-acquisition GPS in stationary tests and fine-scale tracking of green turtles. J Exp Mar Biol Ecol 374:58–68. doi:10.1016/j.jembe.2009.04.009 CrossRefGoogle Scholar
  25. Hazen EL, Maxwell SM, Bailey H, Bograd SJ, Hamann M, Gaspar P, Godley BJ, Shillinger GL (2012) Ontogeny in marine tagging and tracking science: technologies and data gaps. Mar Ecol Prog Ser 457:221–240. doi:10.3354/meps09857 CrossRefGoogle Scholar
  26. Hebblewhite M, Haydon DT (2010) Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology. Phil Trans R Soc B 365:2303–2312. doi:10.1098/rstb.2010.0087 CrossRefGoogle Scholar
  27. Hoenner X, Whiting SD, Hindell MA, McMahon CR (2012) Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals. PLoS One 7:e40713. doi:10.1371/journal.pone.0040713 CrossRefGoogle Scholar
  28. Ironside KE, Mattson DJ, Arundel TR, Hansen JR (2017) Is GPS telemetry location error screening beneficial? Wildl Biol. doi:10.2981/wlb.00229 Google Scholar
  29. Kays R, Crofoot MC, Jetz W, Wikelski M (2015) Terrestrial animal tracking as an eye on life and planet. Science 348:aaa2478. doi:10.1126/science.aaa2478 CrossRefGoogle Scholar
  30. Kie J (2013) A rule-based ad hoc method for selecting a bandwidth in kernel home-range analyses. Anim Biotelem 1:13CrossRefGoogle Scholar
  31. Kuhn CE, Johnson DS, Ream RR, Gelatt TS (2009) Advances in the tracking of marine species: using GPS locations to evaluate satellite track data and a continuous-time movement model. Mar Ecol Prog Ser 393:97–109. doi:10.3354/meps08229 CrossRefGoogle Scholar
  32. Lopez R, Malardé J-P, Royer F, Gaspar P (2014) Improving Argos doppler location using multiple-model Kalman filtering. IEEE Trans Geosci Remote Sens 52:4744–4755. doi:10.1109/TGRS.2013.2284293 CrossRefGoogle Scholar
  33. Luschi P, Hays GC, Del Seppia C, Marsh R, Papi F (1998) The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proc Roy Soc Lond B 265:2279–2284. doi:10.1098/rspb.1998.0571 CrossRefGoogle Scholar
  34. McClintock BT, London JM, Cameron MF, Boveng PL (2015) Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol Evol 6:266–277. doi:10.1111/2041-210X.12311 CrossRefGoogle Scholar
  35. Montgomery RA, Roloff GJ, Ver Hoef JM (2011) Implications of ignoring telemetry error on inference in wildlife resource use models. J Wildl Manag 75:702–708. doi:10.1002/jwmg.96 CrossRefGoogle Scholar
  36. Ogden JC, Robinson L, Whitlock K, Daganhardt H, Cebula R (1983) Diel foraging patterns in juvenile green turtles (Chelonia mydas L.) in St. Croix United States Virgin Islands. J Exp Mar Biol Ecol 66:199–205. doi:10.1016/0022-0981(83)90160-0 CrossRefGoogle Scholar
  37. Papi F, Liew HC, Luschi P, Chan EH (1995) Long-range migratory travel of a green turtle tracked by satellite: evidence for navigational ability in the open sea. Mar Biol 122:171–175. doi:10.1007/BF00348929 CrossRefGoogle Scholar
  38. R Core Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Australia. URL https://www.R-project.org/. Accessed 1 Dec 2016
  39. Renaud ML, Carpenter JA, Williams JA (1995) Activities of juvenile green turtles, Chelonia mydas, at a jettied pass in South Texas. Fish Bull 93:586–593Google Scholar
  40. Schofield G, Hobson VJ, Lilley MKS, Katselidis KA, Bishop CM, Brown P, Hays GC (2010a) Inter-annual variability in the home range of breeding turtles: implications for current and future conservation management. Biol Conserv 143:722–730. doi:10.1016/j.biocon.2009.12.011 CrossRefGoogle Scholar
  41. Schofield G, Hobson VJ, Fossette S, Lilley MKS, Katselidis KA, Hays GC (2010b) Fidelity to foraging sites, consistency of migration routes and habitat modulation of home range by sea turtles. Divers Distrib 16:840–853. doi:10.1111/j.1472-4642.2010.00694.x CrossRefGoogle Scholar
  42. Seaman DE, Millspaugh JJ, Kernohan BJ, Brundige GC, Raedeke KJ, Gitzen RA (1999) Effects of sample size on kernel home range estimates. J Wildl Manag 63:739–747. doi:10.2307/3802664 CrossRefGoogle Scholar
  43. Seminoff JA, Jones TT (2006) Diel movements and activity ranges of green turtles (Chelonia mydas) at a temperate foraging area in the Gulf of California, Mexico. Herpetol Conserv Biol 1:81–86Google Scholar
  44. Shaver DJ, Hart KM, Fujisaki I, Rubio C, Sartain-Iverson AR, Peña J, Gamez DG, Miron RD, Burchfield PM, Martinez HJ, Ortiz J (2016) Migratory corridors of adult female Kemp’s ridley turtles in the Gulf of Mexico. Biol Conserv 194:158–167. doi:10.1016/j.biocon.2015.12.014 CrossRefGoogle Scholar
  45. Sims DW, Queiroz N, Humphries NE, Lima FP, Hays GC (2009) Long-term GPS tracking of ocean sunfish Mola mola offers a new direction in fish monitoring. PLoS One 4:e7351. doi:10.1371/journal.pone.0007351 CrossRefGoogle Scholar
  46. Swimmer Y, McNaughton L, Foley D, Moxey L, Nielsen A (2009) Movements of olive ridley sea turtles Lepidochelys olivacea and associated oceanographic features as determined by improved light-based geolocation. Endanger Species Res 10:245–254. doi:10.3354/esr00164 CrossRefGoogle Scholar
  47. Taquet C, Taquet M, Dempster T, Soria M, Ciccione S, Roos D, Dagorn L (2006) Foraging of the green sea turtle Chelonia mydas on seagrass beds at Mayotte Island (Indian Ocean), determined by acoustic transmitters. Mar Ecol Prog Ser 306:295–302. doi:10.3354/meps306295 CrossRefGoogle Scholar
  48. Thums M, Whiting SD, Reisser JW, Pendoley KL, Pattiaratchi CB, Harcourt RG, McMahon CR, Meekan MG (2013) Tracking sea turtle hatchlings—a pilot study using acoustic telemetry. J Exp Mar Biol Ecol 440:156–163. doi:10.1016/j.jembe.2012.12.006 CrossRefGoogle Scholar
  49. Vincent C, McConnell BJ, Ridoux V, Fedak MA (2002) Assessment of Argos location accuracy from satellite tags deployed on captive gray seals. Mar Mamm Sci 18:156–166. doi:10.1111/j.1748-7692.2002.tb01025.x CrossRefGoogle Scholar
  50. Whiting SD, Miller JD (1998) Short term foraging ranges of adult green turtles (Chelonia mydas). J Herpetol 32:330–337. doi:10.2307/1565446 CrossRefGoogle Scholar
  51. Witt MJ, Åkesson S, Broderick AC, Coyne MS, Ellick J, Formia A, Hays GC, Luschi P, Stroud S, Godley BJ (2010) Assessing accuracy and utility of satellite-tracking data using Argos-linked Fastloc-GPS. Anim Behav 80:571–581. doi:10.1016/j.anbehav.2010.05.022 CrossRefGoogle Scholar
  52. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi:10.2307/1938423 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Life and Environmental SciencesDeakin University, Centre for Integrative EcologyWarrnamboolAustralia
  2. 2.Department of BiosciencesSwansea UniversitySwanseaUK
  3. 3.Institute for Wetland and Water ResearchRadboud University NijmegenNijmegenThe Netherlands
  4. 4.Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands

Personalised recommendations