Skip to main content

Advertisement

Log in

Quantifying larvae of the coralivorous seastar Acanthaster cf. solaris on the Great Barrier Reef using qPCR

  • Method
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Coral reefs are under threat from a variety of sources including the corallivorous seastar, Acanthaster cf. solaris. (Crown of Thorns Seastar; CoTS). Outbreak prediction is a strategic component of managing the impact of this boom and bust species. Details on the fate and dispersal of planktonic life stages are limited, with CoTS larval stages indistinct morphologically from many other asteroid larvae. Given the similarity of many larvae, quantification of marine larvae stages is a major challenge for marine ecologists. We describe a quantitative polymerase chain reaction (qPCR) assay that enables the enumeration of CoTS larvae in field collected plankton samples. Specific primers for the mitochondrial cytochrome oxidase subunit 1 gene (mtCOI) were developed and validated for specificity and sensitivity. Larval culture experiments with CoTS allowed us to determine the mtCOI copy number per larval stage which aided in relating copy numbers in the plankton to actual larval densities. We found the mtCOI copy number varied 3.6-fold across all CoTS planktonic life stages from unfertilised oocyte to competent brachiolaria and this variation was taken into account when determining CoTS larval densities in field samples on the Great Barrier Reef (GBR). CoTS larvae were detected at many locations in the CoTS ‘initiation box’ on the GBR between Cairns and Lizard Island in December 2014 with the highest mean CoTS larval density at 36.9 (23.7–84.3) CoTS larvae m3 between Rudder and Tongue Reef (16.233°S, 145.643°E). Field negative samples taken outside spawning season along with DNA extraction recovery experiments confirmed our sampling, extraction and assay methods were robust. This method will greatly help further studies on understanding CoTS larval ecology and outbreaks, with methods developed also important tools for other ecologically and commercially important marine species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Babcock RC, Mundy CN (1992) Reproductive-biology, spawning and field fertilization rates of Acanthaster planci. Aust J Mar Freshw Res 43:525–534

    Article  Google Scholar 

  • Babcock RC, Milton DA, Pratchett MS (2016) Relationships between size and reproductive output in the crown-of-thorns starfish. Mar Biol 163:234. doi:10.1007/s00227-016-3009-5

    Article  Google Scholar 

  • Baird AH, Pratchett MS, Hoey AS, Herdiana Y, Campbell SJ (2013) Acanthaster planci is a major cause of coral mortality in Indonesia. Coral Reefs 32:803–812. doi:10.1007/s00338-013-1025-1

    Article  Google Scholar 

  • Benzie JAH, Dixon P (1994) The effects of sperm concentration, sperm-egg ratio, and gamete age on fertilization success in crown-of-thorns starfish (Acanthaster Planci) in the laboratory. Biol Bull 186:139–152. doi:10.2307/1542048

    Article  Google Scholar 

  • Black K, Moran P, Burrage D, Death G (1995) Association of low-frequency currents and crown-of-thorns starfish outbreaks. Mar Ecol Prog Ser 125:185–194. doi:10.3354/Meps125185

    Article  Google Scholar 

  • Bott N, Giblot-Ducray D, Deveney MR (2010a) Molecular tools for detection of marine pests: development of putative diagnostic PCR assays for the detection of significant marine pests: Asterias amurensis, Carcinus maenas, Undaria pinnatifida and Ciona intestinalis. South Australian Research and Development Institute (Aquatic Sciences), Adelaide

    Google Scholar 

  • Bott NJ et al (2010b) Toward routine, DNA-based detection methods for marine pests. Biotechnol Adv 28:706–714. doi:10.1016/j.biotechadv.2010.05.018

    Article  CAS  Google Scholar 

  • Bucklin A, Steinke D, Blanco-Bercial L (2011) DNA barcoding of marine metazoa. Annu Rev Mar Sci 3(3):471–508. doi:10.1146/annurev-marine-120308-080950

    Article  Google Scholar 

  • Bucklin A, Lindeque PK, Rodriguez-Ezpeleta N, Albaina A, Lehtiniemi M (2016) Metabarcoding of marine zooplankton: prospects, progress and pitfalls. J Plankton Res 38:393–400. doi:10.1093/plankt/fbw023

    Article  Google Scholar 

  • Bustin SA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797

    Article  CAS  Google Scholar 

  • Caballes CF, Pratchett MS, Kerr AM, Rivera-Posada JA (2016) the role of maternal nutrition on oocyte size and quality, with respect to early larval development in the coral-eating starfish, Acanthaster planci. PLoS One 11:e0158007. doi:10.1371/journal.pone.0158007

    Article  Google Scholar 

  • Carling PJ, Cree LM, Chinnery PF (2011) The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 11:686–692. doi:10.1016/j.mito.2011.05.004

    Article  CAS  Google Scholar 

  • Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2016) GenBank. Nucleic Acids Res 44:D67–D72. doi:10.1093/nar/gkv1276

    Article  CAS  Google Scholar 

  • De’ath G, Fabricius KE, Sweatman H, Puotinen M (2012) The 27-year decline of coral cover on the Great Barrier Reef and its causes. Proc Natl Acad Sci USA 109:17995–17999. doi:10.1073/pnas.1208909109

    Article  Google Scholar 

  • Durbin EG, Casas MC, Rynearson TA, Smith DC (2008) Measurement of copepod predation on nauplii using qPCR of the cytochrome oxidase I gene. Mar Biol 153:699–707. doi:10.1007/s00227-007-0843-5

    Article  CAS  Google Scholar 

  • Endo N, Sato K, Matsumura K, Yoshimura E, Odaka Y, Nogata Y (2010) Species-specific detection and quantification of common barnacle larvae from the Japanese coast using quantitative real-time PCR. Biofouling 26:901–911. doi:10.1080/08927014.2010.531389

    Article  CAS  Google Scholar 

  • Fabricius KE, Okaji K, De’ath G (2010) Three lines of evidence to link outbreaks of the crown-of-thorns seastar Acanthaster planci to the release of larval food limitation. Coral Reefs 29:593–605. doi:10.1007/s00338-010-0628-z

    Article  Google Scholar 

  • Harvey JBJ, Ryan JP, Mann R, Preston CM, Alvarado N, Scholin CA, Vrijenhoek RC (2012) Robotic sampling, in situ monitoring and molecular detection of marine zooplankton. J Exp Mar Biol Ecol 413:60–70. doi:10.1016/j.jembe.2011.11.022

    Article  CAS  Google Scholar 

  • Hebert PD, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270(1):96–99. doi:10.1098/rsbl.2003.0025

    Article  Google Scholar 

  • Hedgecock D (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull Mar Sci 39:550–564

    Google Scholar 

  • Hoey J, Campbell ML, Hewitt CL, Gould B, Bird R (2016) Acanthaster planci invasions: applying biosecurity practices to manage a native boom and bust coral pest in Australia. Manag Biol Invasions 7:213–220. doi:10.3391/mbi.2016.7.3.01

    Article  Google Scholar 

  • Jansen RP, Burton GJ (2004) Mitochondrial dysfunction in reproduction. Mitochondrion 4:577–600. doi:10.1016/j.mito.2004.07.038

    Article  CAS  Google Scholar 

  • Jensen PC, Purcell MK, Morado JF, Eckert GL (2012) Development of a real-time pcr assay for detection of planktonic red king crab (Paralithodes camtschaticus (Tilesius 1815)) larvae. J Shellfish Res 31:917–924. doi:10.2983/035.031.0402

    Article  Google Scholar 

  • Johnson LG, Babcock RC (1994) Temperature and the larval ecology of the crown-of-thorns starfish, Acanthaster planci. Biol Bull 187:304–308. doi:10.2307/1542287

    Article  Google Scholar 

  • Jungbluth MJ, Goetze E, Lenz PH (2013) Measuring copepod naupliar abundance in a subtropical bay using quantitative PCR. Mar Biol 160:3125–3141. doi:10.1007/s00227-013-2300-y

    Article  Google Scholar 

  • Kayal M et al (2012) Predator crown-of-thorns starfish (Acanthaster planci) outbreak, Mass mortality of corals, and cascading effects on reef fish and benthic communities. PLoS One 7:e47363. doi:10.1371/journal.pone.0047363

    Article  CAS  Google Scholar 

  • Keesing JK, Halford AR, Hall KC, Cartwright CM (1997) Large-scale laboratory culture of the crown-of-thorns starfish Acanthaster planci (L.) (Echinodermata: Asteroidea). Aquaculture 157:215–226. doi:10.1016/S0044-8486(97)00062-8

    Article  Google Scholar 

  • Kon NF et al (2015) Spatial distribution of toxic Alexandrium tamiyavanichii (Dinophyceae) in the southeastern South China Sea-Sulu Sea: a molecular-based assessment using real-time quantitative PCR (qPCR) assay. Harmful Algae 50:8–20. doi:10.1016/j.hal.2015.10.002

    Article  CAS  Google Scholar 

  • Lamare M, Pecorino D, Hardy N, Liddy M, Byrne M, Uthicke S (2014) The thermal tolerance of crown-of-thorns (Acanthaster planci) embryos and bipinnaria larvae: implications for spatial and temporal variation in adult populations. Coral Reefs 33:207–219. doi:10.1007/s00338-013-1112-3

    Article  Google Scholar 

  • Loh WKW, Bond P, Ashton KJ, Roberts DT, Tibbetts IR (2014) DNA barcoding of freshwater fishes and the development of a quantitative qPCR assay for the species-specific detection and quantification of fish larvae from plankton samples. J Fish Biol 85:307–328. doi:10.1111/jfb.12422

    Article  CAS  Google Scholar 

  • Lucas JS, Jones MM (1976) Hybrid crown-of-thorns starfish (Acanthaster planci × A. brevispinus) reared to maturity in the laboratory. Nature 263:409–412

    Article  CAS  Google Scholar 

  • McKinnon AD, Thorrold SR (1993) Zooplankton community structure and copepod egg-production in coastal waters of the central Great-Barrier-Reef lagoon. J Plankton Res 15:1387–1411. doi:10.1093/plankt/15.12.1387

    Article  Google Scholar 

  • Mishra P, Chan DC (2014) Mitochondrial dynamics and inheritance during cell division, development and disease. Nat Rev Mol Cell Biol 15:634–646. doi:10.1038/nrm3877

    Article  CAS  Google Scholar 

  • Okaji K, Ayukai T, Lucas JS (1997) Selective feeding by larvae of the crown-of-thorns starfish, Acanthaster planci (L). Coral Reefs 16:47–50. doi:10.1007/s003380050058

    Article  Google Scholar 

  • Pan M, McBeath AJA, Hay SJ, Pierce GJ, Cunningham CO (2008) Real-time PCR assay for detection and relative quantification of Liocarcinus depurator larvae from plankton samples. Mar Biol 153:859–870. doi:10.1007/s00227-007-0858-y

    Article  CAS  Google Scholar 

  • Pratchett MS, Caballes CF, Rivera-Posada JA, Sweatman HPA (2014) Limits to understanding and managing outbreaks of crown-of-thorns starfish (Acanthaster Spp.) Oceanogr. Mar Biol 52:133–199. doi:10.1201/B17143

    Google Scholar 

  • Preston CM et al (2011) Underwater application of quantitative PCR on an Ocean Mooring. PLoS One 6:e22522. doi:10.1371/journal.pone.0022522

    Article  CAS  Google Scholar 

  • Rees HC, Maddison BC, Middleditch DJ, Patmore JRM, Gough KC (2014) REVIEW: the detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. J Appl Ecol 51:1450–1459. doi:10.1111/1365-2664.12306

    Article  CAS  Google Scholar 

  • Richardson MF, Sherman CDH, Lee RS, Bott NJ, Hirst AJ (2016) Multiple dispersal vectors drive range expansion in an invasive marine species. Mol Ecol 25:5001–5014. doi:10.1111/mec.13817

    Article  CAS  Google Scholar 

  • Shaw JLA, Weyrich L, Cooper A (2016) Using environmental (e)DNA sequencing for aquatic biodiversity surveys: a beginner’s guide. Mar Freshw Res 68:20–33. doi:10.1071/MF15361

    Google Scholar 

  • Sigsgaard EE et al (2016) Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol 1:0004. doi:10.1038/s41559-016-0004

    Article  Google Scholar 

  • Sorokin YI, Sorokin PY (2009) Analysis of plankton in the southern Great Barrier Reef: abundance and roles in throphodynamics. J Mar Biol Assoc UK 89:235–241

    Article  CAS  Google Scholar 

  • Suzuki G et al (2016) Detection of a high-density brachiolaria-stage larval population of crown-of-thorns sea star (Acanthaster planci) in Sekisei Lagoon (Okinawa, Japan). Diversity 8:9

    Article  Google Scholar 

  • Takahara T, Minamoto T, Doi H (2013) Using environmental DNA to estimate the distribution of an invasive fish species in ponds. PLoS One 8:e56584. doi:10.1371/journal.pone.0056584

    Article  CAS  Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom-bust phylum? Ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24. doi:10.1890/07-2136.1

    Article  Google Scholar 

  • Uthicke S, Byrne M, Conand C (2010) Genetic barcoding of commercial Beche-de-mer species (Echinodermata: Holothuroidea). Mol Ecol Resour 10:634–646. doi:10.1111/j.1755-0998.2009.02826.x

    Article  CAS  Google Scholar 

  • Uthicke S et al (2013) Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci. PLoS One 8:e82938. doi:10.1371/journal.pone.0082938

    Article  Google Scholar 

  • Uthicke S, Doyle J, Duggan S, Yasuda N, McKinnon AD (2015a) Outbreak of coral-eating Crown-of-Thorns creates continuous cloud of larvae over 320 km of the Great Barrier Reef. Sci Rep 5:16885. doi:10.1038/srep16885

    Article  CAS  Google Scholar 

  • Uthicke S, Logan M, Liddy M, Francis D, Hardy N, Lamare M (2015b) Climate change as an unexpected co-factor promoting coral eating seastar (Acanthaster planci) outbreaks. Sci Rep 5:8402. doi:10.1038/Srep08402

    Article  CAS  Google Scholar 

  • Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228. doi:10.1016/j.jembe.2006.02.005

    Article  CAS  Google Scholar 

  • Vallejo CG, Lopez M, Ochoa P, Manzanares M, Garesse R (1996) Mitochondrial differentiation during the early development of the brine shrimp Artemia franciscana. Biochem J 314:505–510

    Article  CAS  Google Scholar 

  • Vanhatalo J, Hosack GR, Sweatman H (2016) Spatiotemporal modelling of crown-of-thorns starfish outbreaks on the Great Barrier Reef to inform control strategies. J Appl Ecol. doi:10.1111/1365-2664.12710

    Google Scholar 

  • Vogler AP, Monaghan MT (2007) Recent advances in DNA taxonomy. J Zool Syst Evol Res 45:1–10. doi:10.1111/j.1439-0469.2006.00384.x

    Article  Google Scholar 

  • Vogler C, Benzie J, Lessios H, Barber PH, Worheide G (2008) A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett 4:696–699. doi:10.1098/rsbl.2008.0454

    Article  Google Scholar 

  • Ward RD, Holmes BH, O’Hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Resour 8:1202–1211. doi:10.1111/j.1755-0998.2008.02332.x

    Article  CAS  Google Scholar 

  • Wight NA, Vadopalas B, Friedman CS (2008) Identification and quantification of burrowing shrimp larvae (Neoptrypaea californiensis and Upogebia puggetensis) from plankton samples using quantitative polymerase chain reactions (QPCR). J Shellfish Res 27:462

    Google Scholar 

  • Williams ST, Benzie JAH (1993) Genetic consequences of long larval life in the starfish Linckia laevigata (Echinodermata, Asteroidea) on the Great-Barrier-Reef. Mar Biol 117:71–77. doi:10.1007/Bf00346427

    Article  Google Scholar 

  • Wolfe K, Graba-Landry A, Dworjanyn SA, Byrne M (2015a) Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar Ecol Prog Ser 539:179–189. doi:10.3354/meps11495

    Article  Google Scholar 

  • Wolfe K, Graba-Landry A, Dworjanyn SA, Byrne M (2015b) Larval starvation to satiation: influence of nutrient regime on the success of Acanthaster planci. PLoS One 10:e0122010. doi:10.1371/journal.pone.0122010

    Article  Google Scholar 

  • Wooldridge SA, Brodie JE (2015) Environmental triggers for primary outbreaks of crown-of-thorns starfish on the Great Barrier Reef, Australia. Mar Pollut Bull 101:805–815. doi:10.1016/j.marpolbul.2015.08.049

    Article  CAS  Google Scholar 

  • Yamahara KM et al (2015) Simultaneous monitoring of faecal indicators and harmful algae using an in situ autonomous sensor. Lett Appl Microbiol 61:130–138. doi:10.1111/lam.12432

    Article  CAS  Google Scholar 

  • Yamamoto S et al (2016) Environmental DNA as a ‘snapshot’ of fish distribution: a case study of Japanese jack mackerel in Maizuru Bay, Sea of Japan. PLoS One 11:e0149786. doi:10.1371/journal.pone.0149786

    Article  Google Scholar 

  • Yamamoto S et al (2017) Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Sci Rep 7:40368. doi:10.1038/srep40368

    Article  CAS  Google Scholar 

  • Yasuda N, Hamaguchi M, Sasaki M, Nagai S, Saba M, Nadaoka K (2006) Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus. BMC Genom 7:17. doi:10.1186/1471-2164-7-17

    Article  Google Scholar 

  • Yasuda N, Nagai S, Hamaguchi M, Okaji K, Gerard K, Nadaoka K (2009) Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol Ecol 18:1574–1590

    Article  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform 13:134. doi:10.1186/1471-2105-13-134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Professor Gert Wörheide of the Luwig Maximilians University, Germany for the generous donation of CoTS tissue from non-GBR locations. We are grateful to Association of Marine Park Tourism Operators for ongoing support in field sampling and provision of experimental animals. We would also like to extend our gratitude to the crew of the RV Cape Ferguson and staff from the National Sea Simulator (SeaSim) for their continuing support in marine research at AIMS. Funding for this research was provided by the Australian Institute of Marine Science and the Great Barrier Reef Marine Park Authority.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Doyle.

Ethics declarations

Ethical approval

Collections were conducted under a permit from the Great Barrier Reef Marine Park Authority (Permit No. G38062.1). Ethical approval under Australian legislation is not required for invertebrates used in this study.

Conflict of interest

The authors declare that they have no conflict of interest and consent was obtained from all participants.

Additional information

Responsible Editor: T. Reusch.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doyle, J.R., McKinnon, A.D. & Uthicke, S. Quantifying larvae of the coralivorous seastar Acanthaster cf. solaris on the Great Barrier Reef using qPCR. Mar Biol 164, 176 (2017). https://doi.org/10.1007/s00227-017-3206-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3206-x

Navigation