Abstract
Indices calculated from “muttonbirding” diaries collected by the Rakiura Māori of New Zealand were correlated with future values of the Southern Oscillation Index (SOI), and the Pacific Decadal Oscillation (PDO) from 1957 to 2010. Spearman correlations showed that La Niña events tended to occur after those harvest seasons with relatively high success and chick size, whereas El Niño events tended to occur after harvest seasons with relatively low success and chick size. Generalized boosted regression models show that chick size alone is able to predict shifts in SOI from 0 to 12 months after the harvest. A model that included chick size, 2-year average PDO (prior to the harvest), and one year averages of SOI (prior to the harvest), was able to predict shifts in SOI 13–20 months after the harvest. It is likely that sooty shearwater adults (and therefore chick size and quantity) are being affected by oceanographic conditions that are also precursors to shifts in SOI, and that there is a complex interaction between PDO prior to the harvest, the harvest indices and SOI. The location and timing of adult birds at the time they are provisioning chicks could lead to potential mechanisms and requires further study.
This is a preview of subscription content, access via your institution.






References
Adams J, Flora S (2009) Correlating seabird movements with ocean winds: linking satellite telemetry with ocean scatterometry. Mar Biol 157:915–929. doi:10.1007/s00227-009-1367-y
Ainley D, Clarke E, Arrigo K et al (2005a) Decadal-scale changes in the climate and biota of the Pacific sector of the Southern Ocean, 1950s to the 1990s. Antarct Sci 17:171–182. doi:10.1017/S0954102005002567
Ainley D, Spear L, Tynan C et al (2005b) Physical and biological variables affecting seabird distributions during the upwelling season of the northern California Current. Deep Sea Res Part II Top Stud Oceanogr 52:123–143. doi:10.1016/j.dsr2.2004.08.016
Ashmole N (1971) Seabird ecology and the marine environment. In: Farner D, JR K (eds) Avian biology. Academic Press, New York, New York, pp 223–286
Baird P (1990) Influence of abiotic factors and prey distribution on diet and reprodcutive success of three seabird species in Alaska. Ornis Scand 21:224–235
Barnston A, Tippett M, L’Heureux M et al (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull Am Meteorol Soc 93:631–651. doi:10.1175/BAMS-D-11-00111.1
Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97:163–172
Breiman L (2001) Random forests. Mach Learn 45:5–32
Clucas R (2011) Long-term population trends of Sooty Shearwater (Puffinus griseus) revealed by hunt success. Ecol Appl 21:1308–1326
Clucas R, Moller H, Bragg C (2012) Rakiura Māori muttonbirding diaries: monitoring trends in tītī (Puffinus griseus) abundance in New Zealand. New Zeal J Zool 39:37–41
Cunningham G, Strauss V, Ryan P (2008) African penguins (Spheniscus demersus) can detect dimethyl sulphide, a prey-related odour. J Exp Biol 211:3123–3127. doi:10.1242/jeb.018325
Cutler D, Edwards T, Beard K et al (2007) Random forests for classification in ecology. Ecology 88:2783–2792
Devney CA, Short M, Congdon BC (2009) Sensitivity of tropical seabirds to El Niño precursors. Ecology 90:1175–1183
Durant J, Anker-nilssen T, Stenseth N (2003) Trophic interactions under climate fluctuations: as an example the Atlantic puffin. Proc Biol Sci 270:1461–1466
Erikstad K, Fauchald P, Tveraa T, Steen H (1998) On the cost of reproduction in long-lived birds: the influence of environmental variability. Ecology 79:1781–1788
Furness R, Camphuysen K (1997) Seabirds as monitors of the marine environment. ICES J Mar Sci 54:726–737
Gaston A, Gilchrist H, Mallory M, Smith P (2009) Changes in seasonal events, peak food availability, and consequent breeding adjustment in a marine bird: a case of progressive mismatching. Condor 111:111–119. doi:10.1525/cond.2009.080077
Genuer R, Poggi J, Tuleau-Malot C (2010) Variable selection using random forests. Pattern Recognit Lett 31:2225–2236. doi:10.1016/j.patrec.2010.03.014
Grémillet D, Welcker J, Karnovsky N et al (2012) Little auks buffer the impact of current Arctic climate change. Mar Ecol Prog Ser 454:197–206. doi:10.3354/meps09590
Hansen J (2002) Realizing the potential benefits of climate prediction to agriculture: issues, approaches, challenges. Agric Syst 74:309–330
Harrison D, Larkin N (1998) El Nino-Southern oscillation sea surface temperature and wind anomalies, 1946–1993. Rev Geophys 36:353–399
Humphries GRW (2014) Using long term harvest records of sooty shearwaters (Titi; Puffinus griseus) to predict shifts in the Southern Oscillation (Thesis, Doctor of Philosophy). University of Otago, Dunedin
Humphries GRW, Velarde E, Anderson DW, Haase B, Sydeman WJ (2015) Seabirds as early warning indicators of climate events in the Pacific. PICES Press 23:18–20
Hunt G Jr (1991) Occurrence of polar seabirds at sea in relation to prey concentrations and oceanographic factors. Polar Res 10:553–560
Hunt G Jr, Stabeno P, Walters G et al (2002) Climate change and control of the southeastern Bering Sea pelagic ecosystem. Deep Sea Res II 49:5821–5853
Jenouvrier S, Barbraud C, Weimerskirch H (2005) Long-term contrasted responses to climate of two Antarctic seabird species. Ecology 86:2889–2903. doi:10.1890/05-0514
Kitson J, Moller H (2008) Looking after your ground: resource management practice by Rakiura Maori titi harvesters. Pap Proc R Soc Tasmania 142:161–176
Lack DL (1966) Population studies of birds. Clarendon Press, Oxford
Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22
Lovvorn JR, Richman SF, Grebmeir JM et al (2003) Diet and body condition of spectacled eiders wintering in pack ice of the Bering Sea. Polar Biol 26:259–267
Ludescher J, Gozolchiani A, Bogachev M et al (2014) Very early warning of next El Nino. Proc Natl Acad Sci 111:2064–2066. doi:10.1073/pnas.1323058111
Lyver P, Moller H, Thompson C (1999) Changes in sooty shearwater Puffinus griseus chick production and harvest precede ENSO events. Mar Ecol Prog Ser 188:237–248. doi:10.3354/meps188237
Mantua N, Hare S (2002) The Pacific decadal oscillation. J Oceanogr 58:35–44
McPhaden MJ, Yu X (1999) Equatorial waves and the 1997–98 El Niño. Geophy Res Lett 26:2961
Newman M, Compo G, Alexander M (2003) ENSO-forced variability of the Pacific decadal oscillation. J Clim 16:3853–3857
Paiva VH, Geraldes P, Marques V, Rodriguez R, Garthe S, Ramos JA (2013) Effects of environmental variability on different trophic levels of the North Atlantic food web. Mar Ecol Prog Ser 477:15–28
Peterson R, White W (1998) Slow oceanic teleconnections linking the Antarctic Circumpolar Wave with the tropical El Niño-Southern Oscillation. J Geophys Res 103:24573–24583. doi:10.1029/98JC01947
Prasad A, Iverson L, Liaw A (2006) Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199
Rasmusson E, Wang X, Ropelewski C (1990) The biennial component of ENSO variability. J Mar Syst 1:71–96
Raymond B, Shaffer S, Sokolov S et al (2010) Shearwater foraging in the Southern Ocean: the roles of prey availability and winds. PLoS One 5:e10960. doi:10.1371/journal.pone.0010960
Ricklefs R (1990) Seabird life histories and the marine environment: some speculations. Colon Waterbirds 13:1–6
Rolland V, Weimerskirch H, Barbraud C (2010) Relative influence of fisheries and climate on the demography of four albatross species. Glob Change Biol 16:1910–1922
Sæther B, Andersen R, Pedersen H (1993) Regulation of parental effort in a long-lived seabird an experimental manipulation of the cost of reproduction in the antarctic petrel, Thalassoica antarctica. Behav Ecol Sociobiol 33:147–150
Salihoglu B, Fraser W, Hofmann E (2001) Factors affecting fledging weight of Adélie penguin (Pygoscelis adeliae) chicks: a modeling study. Polar Biol 24:328–337. doi:10.1007/s003000000215
Sandvik H, Erikstad KE, Barrett RT et al (2005) The effect of climate on adult survival in five species of North Atlantic seabirds. J Anim Ecol 74:817–831
Shaffer S, Tremblay Y, Weimerskirch H et al (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci 103:12799
Shaffer S, Weimerskirch H, Scott D et al (2009) Spatiotemporal habitat use by breeding sooty shearwaters Puffinus griseus. Mar Ecol Prog Ser 391:209–220. doi:10.3354/meps07932
Shuntov VE (1974) Seabirds and the biological structure of the ocean. Springfield, VA
Soreide N, McCarty L, McClurg D (1995) Mosaic access to real-time data from the TOGA-TAO array of moored buoys. Comput Netw ISDN Syst 28:189–197. doi:10.1016/0169-7552(95)00099-7
Spear L, Ainley D (1999) Migration routes of sooty shearwaters in the Pacific Ocean. Condor 101:205–218. doi:10.2307/1369984
Spear L, Ainley D (2008) The seabird community of the Peru Current, 1980–1995, with comparisons to other eastern boundary currents. Mar Ornithol 36:125–144
Stearns SC (1992) The evolution of life histories, vol 249. Oxford University Press, Oxford
Stenseth N, Ottersen G, Hurrell J et al (2003) Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Nino Southern Oscillation and beyond. Proc R Soc B 270:2087–2096
Tarroux A, Weimerskirch H, Wang SH (2016) Flexible flight response to challenging wind conditions in a commuting Antarctic seabird: do you catch the drift? Anim beh 113:99–112
R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 06 July 2015
Thorne LH, Conners MG, Hazen EL et al (2016) Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses. J R Soc Interface 13:20160196
Trenberth K, Shea D (1987) On the evolution of the southern oscillation. Mon Weather Rev 115:3078–3095
Veit R, Pyle P, McGowan J (1996) Ocean warming and long-term change in pelagic bird abundance within the California current system. Mar Ecol Prog Ser 139:11–18
Veit R, McGowan J, Ainley D et al (1997) Apex marine predator declines ninety percent in association with changing oceanic climate. Glob Chang Biol 3:23–28
Velarde E, Ezcurra E, Cisneros-Mata M, Lavin M (2004) Seabird ecology, El Nino anomalies, and prediction of sardine fisheries in the Gulf of California. Ecol Appl 14:607–615
Vermeer K (1981) The importance of plankton to Cassin’s auklets during breeding. J Plankton Res 3:315–329
Wang S-Y, L’Heureux M, Chia H-H (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett. doi:10.1029/2012GL050909
Wang C, Deser C, Yu J-Y et al (2016) El Niño and southern oscillation (ENSO): a review. Coral reefs of the eastern Pacific. Springer, Netherlands, pp 85–106
Weimerskirch H (1998) How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J Anim Ecol 67:99–109
Weimerskirch H, Chastel O, Ackermann L (1995) Adjustment of parental effort to manipulated foraging ability in a pelagic seabird, the thin-billed prion Pachyptila belcheri. Behav Ecol Sociobiol 36:11–16
Wells B, Field J, Thayer J et al (2008) Untangling the relationships among climate, prey and top predators in an ocean ecosystem. Mar Ecol Prog Ser 364:15–29. doi:10.3354/meps07486
Zhu J, Zhou G-Q, Zhang R-H, Sun Z (2013) Improving ENSO prediction in a hybrid coupled model with an embedded entrainment temperature parameterisation. Int J Climatol 33:343–355. doi:10.1002/joc.3426
Acknowledgements
Due to contractual agreements and cultural sensitivities, data used to perform this study are unable to be shared. Additional support for analysis and edits on the manuscript were given by J. Overton, F. Huettmann, C. Strobl, T. Hawthorne, W. Sydeman, J. Elith and S. Oppel. We would also like to thank Axios Review for their help in preparing the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Funding
This research was funded by the Department of Zoology at the University of Otago and by National Geographic Grant# WGS249-12 on behalf of the Waitt foundation.
Conflict of interest
G. R. W. Humphries declares that he has no conflict of interest. H. Moller declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with animals performed by any of the authors.
Additional information
Responsible Editor: V. Paiva.
Reviewed by L. Krüger and R. Nager.
Rights and permissions
About this article
Cite this article
Humphries, G.R.W., Möller, H. Fortune telling seabirds: sooty shearwaters (Puffinus griseus) predict shifts in Pacific climate. Mar Biol 164, 150 (2017). https://doi.org/10.1007/s00227-017-3182-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00227-017-3182-1