Skip to main content
Log in

High habitat use plasticity by female olive ridley sea turtles (Lepidochelys olivacea) revealed by stable isotope analysis in multiple tissues

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The marine habitat use of olive ridley sea turtles (Lepidochelys olivacea) from northeastern Brazil was analyzed via stable isotope analysis (SIA). Blood (red blood cells and serum), epidermis and scute samples from 46 nesting females were collected for SIA of carbon (δ 13C) and nitrogen (δ 15N) to infer the habitats used at distinct time windows. Such approach is possible because each tissue reflects consumer’s diet at different time scales due to different tissue turnover time. Prey representative of both neritic and oceanic realms was used as endpoints. Differences in the residence time of δ 13C and δ 15N among samples indicated a shift from oceanic feeding grounds to neritic habitats before nesting or effects of prolonged fasting on stable isotope values. However, two individuals seemed to have used neritic feeding habitats for longer timespans before the nesting period. Stable isotope mixing models demonstrated high individual variability, suggesting the variable use of non-breeding grounds. Moreover, serum indicated that olive ridleys might feed during the nesting season, most likely opportunistically on discards from trawl fisheries. Finally, through correlations of stable isotope values among tissues, this study provides equations for the conversion and adequate comparison between values from different tissues. Therefore, the habitats used by olive ridley sea turtles from Brazil are vast, encompassing both oceanic and neritic habitats, where they encounter pelagic longline and trawl fisheries, respectively. The high individual variability in the population results in turtles experiencing distinct and variable threats during their annual cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arrington DA, Davidson BK, Winemiller KO, Layman CA (2006) Influence of life history and seasonal hydrology on lipid storage in three Neotropical fish species. J Fish Biol 68:1347–1361. doi:10.1111/j.0022-1112.2006.00996.x

    Article  CAS  Google Scholar 

  • Bjorndal KA, Bolten AB (2010) Hawksbill sea turtles in seagrass pastures: success in a peripheral habitat. Mar Biol 157:135–145. doi:10.1007/s00227-009-1304-0

    Article  Google Scholar 

  • Bolnick DI, Svanbäck R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi:10.1086/343878

    Article  Google Scholar 

  • Bolten AB (1999) Techniques for measuring sea turtles. In: Eckert KL, Bjorndal KA, Abreu-Grobois FA, Donnelly M (eds) Research and management techniques for the conservation of sea turtles, vol 4. IUCN/SSC Marine Turtle Specialist Group, Washington, pp 1–5

    Google Scholar 

  • Bolten AB, Witherington BE (eds) (2003) Loggerhead sea turtles. Smithsonian Books, Washington

    Google Scholar 

  • Bond AL, Diamond AW (2011) Recent Bayesian stable-isotope mixing models are highly sensitive to variation in discrimination factors. Ecol Appl 21:1017–1023. doi:10.1890/09-2409.1

    Article  Google Scholar 

  • Brace KC, Altland PD (1955) Red cell survival in the turtle. Am Physiol Soc 183:91–94

    CAS  Google Scholar 

  • Bradley CJ, Longenecker K, Pyle RL, Popp BN (2016) Compound-specific isotopic analysis of amino acids reveals dietary changes in mesophotic coral-reef fish. Mar Ecol Prog Ser 558:65–79. doi:10.3354/meps11872

    Article  Google Scholar 

  • Bugoni L, Krause L, Petry MV (2003) Diet of sea turtles in southern Brazil. Chelonian Conserv Biol 4:685–688

    Google Scholar 

  • Bugoni L, McGill RAR, Furness RW (2010) The importance of pelagic longline fishery discards for a seabird community determined through stable isotope analysis. J Exp Mar Biol Ecol 391:190–200. doi:10.1016/j.jembe.2010.06.027

    Article  Google Scholar 

  • Carvalho FL (2007) Composição e distribuição dos carangueijos (Crustacea, Brachyura) presentes na fauna acompanhante da pesca do camarão no sul e sudeste da Bahia. Bachelor’s Thesis, Universidade Estadual de Santa Cruz, Ilhéus, Brazil

  • Castilhos JC, Tiwari M (2006) Preliminary data from an increasing olive ridley population in Sergipe, Brazil. Mar Turtle Newsl 113:8

    Google Scholar 

  • Castilhos JC, Coelho AC, Argolo JF, Santos EAP, Marcovaldi AM, Santos ASS, Lopez M (2011) Avaliação do estado de conservação da tartaruga marinha Lepidochelys olivacea (Eschscholtz 1829) no Brasil. Biodiv Bras 1:28–36

    Google Scholar 

  • Ceriani SA, Roth JD, Ehrhart LM, Quintana-Ascencio PF, Weishampel JF (2014) Developing a common currency for stable isotope analyses of nesting marine turtles. Mar Biol 161:2257–2268. doi:10.1007/s00227-014-2503-x

    Article  CAS  Google Scholar 

  • Chambault P, Thoisy B, Heerah K, Conchon A, Barrioz S, Reis V, Berzins R, Kelle L, Picard B, Roquet F, Le Maho Y, Chevallier D (2016) The influence of oceanographic features on the foraging behavior of the olive ridley sea turtle Lepidochelys olivacea along the Guiana coast. Prog Oceanogr 142:58–71. doi:10.1016/j.pocean.2016.01.006

    Article  Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14. doi:10.1111/j.1461-0248.2004.00702.x

    Article  Google Scholar 

  • Colman LP, Sampaio CLS, Weber MI, Castilhos JC (2014) Diet of olive ridley sea turtles, Lepidochelys olivacea, in the waters of Sergipe, Brazil. Chelonian Conserv Biol 13:266–271. doi:10.2744/CCB-1061.1

    Article  Google Scholar 

  • DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochim Cosmochim Acta 42:495–506. doi:10.1016/0016-7037(78)90199-0

    Article  CAS  Google Scholar 

  • DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351. doi:10.1016/0016-7037(81)90244-1

    Article  CAS  Google Scholar 

  • Di Beneditto APM, Moura JF, Siciliano S (2015) Feeding habits of the sea turtles Caretta caretta and Lepidochelys olivacea in south-eastern Brazil. Mar Biodiv Rec 8:1–5. doi:10.1017/S1755267215001001

    Article  Google Scholar 

  • Ellison AM (2004) Bayesian inference in ecology. Ecol Lett 7:509–520. doi:10.1111/j.1461-0248.2004.00603.x

    Article  Google Scholar 

  • Fleming NEC, Harrod C, Newton J, Houghton JDR (2015) Not all jellyfish are equal: isotopic evidence for inter- and intraspecific variation in jellyfish trophic ecology. PeerJ 3:e1110. doi:10.7717/peerj.1110

    Article  Google Scholar 

  • Frische S, Bruno S, Fago A, Weber RE, Mozzarelli A (2001) Oxygen binding by single red blood cells from the red-eared turtle Trachemys scripta. J Appl Physiol 90:1679–1684

    CAS  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2003) Bayesian data analysis, 2nd edn. Chapman & Hall, London

    Google Scholar 

  • Gilks WR, Thomas A, Spiegelhalter DJ (1994) A language and program for complex Bayesian modeling. Statistician 43:169–177. doi:10.2307/2348941

    Article  Google Scholar 

  • Goldberg DW, Leitão SAT, Godfrey MH, Lopez GG, Santos AJB, Neves FA, Souza EPG, Moura AS, Bastos JC, Bastos VLFC (2013) Ghrelin and leptin modulate the feeding behaviour of the hawksbill turtle Eretmochelys imbricata during nesting season. Conserv Physiol 1:cot016. doi:10.1093/conphys/cot016

    Google Scholar 

  • Guimarães SM, Tavares DC, Monteiro-Neto C (2017) Incidental capture of sea turtles by industrial bottom trawl fishery in the tropical south-western Atlantic. J Mar Biol Assoc UK. doi:10.1017/S0025315417000352

    Google Scholar 

  • Hall AG, Avens L, McNeill JB, Wallace B, Goshe LR (2015) Inferring long-term foraging trends of individual juvenile loggerhead sea turtles using stable isotopes. Mar Ecol Prog Ser 537:265–276. doi:10.3354/meps11452

    Article  Google Scholar 

  • Hamann M, Limpus CJ, Owens DW (2003) Reproductive cycles of males and females. In: Lutz PL, Musick JA, Wyneken J (eds) The biology of sea turtles, vol 2. CRC Press, Boca Raton, pp 135–162

    Google Scholar 

  • Hatase H, Takai N, Matsuzawa Y, Sakamoto W, Omuta K, Goto K, Arai N, Fujiwara T (2002) Size-related differences in feeding habitat use of adult female loggerhead Caretta caretta around Japan determined by stable isotope analyses and satellite telemetry. Mar Ecol Prog Ser 233:273–281. doi:10.3354/meps233273

    Article  Google Scholar 

  • Hereu CM, Lavaniegos BE, Goericke R (2010) Grazing impact of salp (Tunicata, Thaliacea) assemblages in the eastern tropical North Pacific. J Plankton Res 32:785–804. doi:10.1093/plankt/fbq005

    Article  CAS  Google Scholar 

  • Hobson KA (1999) Tracing origins and migration of wildlife using stable isotopes: a review. Oecologia 120:314–326. doi:10.1007/s004420050865

    Article  Google Scholar 

  • Hobson KA, Norris DR (2008) Animal migration: a context for using new techniques and approaches. In: Hobson KA, Wassennar LI (eds) Tracking animal migration with stable isotope. Environment Canada, Saskatoon, pp 1–19

    Google Scholar 

  • Hobson KA, Alisauskas RT, Clark RG (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. Condor 95:388–394. doi:10.2307/1369361

    Article  Google Scholar 

  • Hoffman JC (2016) Tracing the origins, migrations, and other movements of fishes using stable isotopes. In: Morais P, Daverat F (eds) An introduction to fish migration. CRC Press, Boca Raton, pp 169–196

    Google Scholar 

  • Hooten MB, Hobbs NT (2015) A guide to Bayesian model selection for ecologists. Ecol Monogr 85:3–28. doi:10.1890/14-0661.1

    Article  Google Scholar 

  • Hopkins-III JB, Ferguson JM (2012) Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS One 7:e28478. doi:10.1371/journal.pone.0028478

    Article  Google Scholar 

  • Hussey NE, Olin JA, Kinney MJ, McMeans BC, Fisk AT (2012) Lipid extraction effects on stable isotope values (δ 13C and δ 15N) of elasmobranch muscle tissue. J Exp Mar Biol Ecol 434:7–15. doi:10.1016/j.jembe.2012.07.012

    Article  Google Scholar 

  • Isaac VJ, Martins AS, Haimovici M, Andriguetto JM (eds) (2006) A pesca marinha e estuarina do Brasil no Século XXI: recursos, tecnologias, aspectos socioeconômicos e institucionais. Universidade Federal do Pará, Belém

    Google Scholar 

  • IUCN (2015) Red list of threatened species. Version 2015-4. Available at http://www.iucnredlist.org. Accessed on 02 May 2016

  • Jones K, Ariel E, Burgess G, Read M (2016) A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet J 212:48–57. doi:10.1016/j.tvjl.2015.10.041

    Article  CAS  Google Scholar 

  • Kopitsky K, Pitman RL, Plotkin PT (1999) Investigations on at-sea mating and reproductive status of olive ridleys, Lepidochelys olivacea, captured in the eastern tropical Pacific. In: Proceedings of the 19th Annual Symposium on Sea Turtle Biology and Conservation. NOAA, p 291

  • Kopitsky K, Pitman RL, Dutton PH (2001) Aspects of olive ridley feeding ecology in the eastern tropical Pacific. In: Proceedings of the 21th Annual Symposium on Sea Turtle Biology and Conservation. NOAA, pp 217

  • Kruschke JK (2015) Doing Bayesian data analysis, a tutorial with R, JAGS, and Stan, 2nd edn. Elsevier, London

    Google Scholar 

  • Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME (2008) Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol 77:838–846. doi:10.1111/j.1365-2656.2008.01394.x

    Article  Google Scholar 

  • Marcovaldi MA, Marcovaldi GGD (1999) Marine turtles of Brazil: the history and structure of Projeto TAMAR-IBAMA. Biol Conserv 91:35–41. doi:10.1016/S0006-3207(99)00043-9

    Article  Google Scholar 

  • Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ (2009) Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev 84:91–111. doi:10.1111/j.1469-185X.2008.00064.x

    Article  Google Scholar 

  • Matos L, Silva ACCD, Castilhos JC, Weber MI, Soares LS, Vicente L (2011) Strong site fidelity and longer internesting interval for solitary nesting olive ridley sea turtles in Brazil. Mar Biol 159:1011–1019. doi:10.1007/s00227-012-1881-1

    Article  Google Scholar 

  • McMahon KW, Hamady LL, Thorrold SR (2013) A review of ecogeochemistry approaches to estimating movements of marine animals. Limnol Oceanogr 58:697–714. doi:10.4319/lo.2013.58.2.0697

    Article  CAS  Google Scholar 

  • Medeiros L, Monteiro DS, Petitet R, Bugoni L (2015) Effects of lipid extraction on the isotopic values of sea turtle bone collagen. Aquat Biol 23:191–199. doi:10.3354/ab00628

    Article  Google Scholar 

  • Mianzan HW, Girola C (1990) The pleustonic coelenterates Physalia physalis (Linne, 1758), Velella velella (Linne, 1758) and Porpita umbella (Müller, 1776) in the southwestern Atlantic waters. Invest Mar CICIMAR 5:97–98

    Google Scholar 

  • Montenegro-Silva BC, Gonzalez NGB, Guerrero AM (1986) Estudio del contenido estomacal de la tortuga marina Lepidochelys olivacea, em la costa de Oaxaca, México. An Inst Cienc Mar Limnol Univ Nac Auton Mex 13:121–132

    Google Scholar 

  • Morreale SJ, Plotkin PT, Shaver DJ, Kalb HJ (2007) Adult migration and habitat utilization: ridley turtles in their elements. In: Plotkin PT (ed) Biology and conservation of ridley sea turtles. The Johns Hopkins University Press, Baltimore, pp 213–229

    Google Scholar 

  • Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:298–320. doi:10.1146/annurev.es.18.110187.001453

    Article  Google Scholar 

  • Petitet R, Avens L, Castilhos JC, Kinas PG, Bugoni L (2015) Age and growth of olive ridley sea turtles Lepidochelys olivacea in the main Brazilian nesting ground. Mar Ecol Prog Ser 541:205–218. doi:10.3354/meps11532

    Article  Google Scholar 

  • Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, Semmens BX, Ward EJ (2014) Best practices for use of stable isotope mixing models in food-web studies. Can J Zool 92:823–835. doi:10.1139/cjz-2014-0127

    Article  Google Scholar 

  • Plotkin PT (2007) Introduction. In: Plotkin PT (ed) Biology and conservation of ridley sea turtles. Johns Hopkins University Press, Baltimore, pp 3–5

    Google Scholar 

  • Plotkin PT (2010) Nomadic behaviour of the highly migratory olive ridley sea turtle Lepidochelys olivacea in the eastern tropical Pacific Ocean. Endang Species Res 13:33–40. doi:10.3354/esr00314

    Article  Google Scholar 

  • Polovina JJ, Balazs GH, Howell EA, Parker DM, Seki MP, Dutton PH (2004) Forage and migration habitat of loggerhead (Caretta caretta) and olive ridley (Lepidochelys olivacea) sea turtles in the central north Pacific Ocean. Fish Oceanogr 13:36–51. doi:10.1046/j.1365-2419.2003.00270.x

    Article  Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x

    Article  Google Scholar 

  • Prior B, Booth DT, Limpus CJ (2016) Investigating diet and diet switching in green turtles (Chelonia mydas). Aust J Zool 63:365–375. doi:10.1071/ZO15063

    Article  Google Scholar 

  • Pritchard PCH (2007) Arribadas I have known. In: Plotkin PT (ed) Biology and conservation of ridley sea turtles. The Johns Kopkins University Press, Baltimore, pp 7–21

    Google Scholar 

  • Purcell JE, Milisenda G, Rizzo A, Carrion SA, Zampardi S, Airoldi S, Zagami G, Guglielmo L, Boero F, Doyle TK, Piraino S (2015) Digestion and predation rates of zooplankton by the pleustonic hydrozoan Velella velella and widespread blooms in 2013 and 2014. J Plankton Res 37:1056–1067. doi:10.1093/plankt/fbv031

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org. Accessed Aug 2016

  • Reich KJ, Bjorndal KA, Bolten AB (2007) The ‘lost years’ of green turtles: using stable isotopes to study cryptic lifestages. Biol Lett 3:712–714. doi:10.1098/rsbl.2007.0394

    Article  Google Scholar 

  • Reich KJ, Bjorndal KA, Martínez del Rio C (2008) Effects of growth and tissue type on the kinetics of 13C and 15N incorporation in a rapidly growing ectotherm. Oecologia 155:651–663. doi:10.1007/s00442-007-0949-y

    Article  Google Scholar 

  • Reich KJ, Bjorndal KA, Frick MG, Witherington BE, Johnson C, Bolten AB (2010) Polymodal foraging in adult female loggerheads (Caretta caretta). Mar Biol 157:113–121. doi:10.1007/s00227-009-1300-4

    Article  Google Scholar 

  • Reis EC, Moura JF, Lima LM, Rennó B, Siciliano S (2010) Evidence of migratory movements of olive ridley turtles (Lepidochelys olivacea) along the Brazilian coast. Braz J Oceanogr 58:255–259. doi:10.1590/S1679-87592010000300009

    Article  Google Scholar 

  • Revelles M, Cardona L, Aguilar A, Borrell A, Fernández G, San Félix M (2007) Stable C and N isotope concentration in several tissues of the loggerhead sea turtle Caretta caretta from the western Mediterranean and dietary implications. Sci Mar 71:87–93. doi:10.3989/scimar.2007.71n187

    Article  CAS  Google Scholar 

  • Romero RM, Moraes LE, Santos MN, Rocha GRA, Cetra M (2008) Biology of Isopisthus parvipinnis: an abundant sciaenid species captured bycatch during sea-bob shrimp fishery in Brazil. Neotrop Ichthyol 6:67–74. doi:10.1590/S1679-62252008000100008

    Article  Google Scholar 

  • Rostal DC (2007) Reproductive physiology of the ridley sea turtle. In: Plotkin PT (ed) Biology and conservation of ridley sea turtles. Johns Hopkins University Press, Baltimore, pp 151–165

    Google Scholar 

  • Rostal DC, Owens DW, Grumbles JS, Mackenzie DS, Amoss-Jr MS (1998) Seasonal reproductive cycle of the Kemp’s ridley sea turtle (Lepidochelys kempi). Gen Comp Endocr 109:232–243. doi:10.1006/gcen.1997.7026

    Article  CAS  Google Scholar 

  • Rubenstein DR, Hobson KA (2004) From birds to butterflies: animal movement and stable isotopes. Trends Ecol Evol 19:256–263. doi:10.1016/j.tree.2004.03.017

    Article  Google Scholar 

  • Rysava K, McGill KAR, Matthiopoulos J, Hopcraft JGC (2016) Re-constructing nutritional history of Serengeti wildebeest from stable isotopes in tail hair: seasonal starvation patterns in an obligate grazer. Rapid Commun Mass Spectrom 30:1461–1468. doi:10.1002/rcm.7572

    Article  CAS  Google Scholar 

  • Sales G, Giffoni BB, Barata PCR (2008) Incidental catch of sea turtles by the Brazilian pelagic longline fishery. J Mar Biol Assoc UK 88:853–864. doi:10.1017/S0025315408000441

    Article  Google Scholar 

  • Santos EAP, Silva ACCD, Sforza R, Oliveira FLC, Weber MI, Castilhos JC, Garcia RS, Marcovaldi MAAG, Ramos RMA, DiMatteo (2016) Where do olive ridley go after nesting along the Brazilian coast. In: Proceedings of the 36th Annual Symposium on Sea Turtle Biology and Conservation. NOAA

  • Seminoff JA, Jones TT, Eguchi T, Jones DR, Dutton PH (2006) Stable isotope discrimination (δ 13C and δ 15N) between soft tissues of the green sea turtle Chelonia mydas and its diet. Mar Ecol Prog Ser 308:271–278. doi:10.3354/meps308271

    Article  CAS  Google Scholar 

  • Seminoff JA, Bjorndal KA, Bolten AB (2007) Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta: insights for trophic study of freshwater turtles. Copeia 2007:534–542. doi:10.1643/0045-8511(2007)2007[534:SCANID]2.0.CO;2

    Article  Google Scholar 

  • Seminoff JA, Jones TT, Eguchi T, Hastings M, Jones DR (2009) Stable carbon and nitrogen isotope discrimination in soft tissues of the leatherback turtle (Dermochelys coriacea): insights for trophic studies of marine turtles. J Exp Mar Biol Ecol 381:33–41. doi:10.1016/j.jembe.2009.08.018

    Article  CAS  Google Scholar 

  • Silva ACCD, Castilhos JC, Lopez GG, Barata PCR (2007) Nesting biology and conservation of the olive ridley sea turtle (Lepidochelys olivacea) in Brazil, 1991/1992 to 2002/2003. J Mar Biol Assoc UK 87:1047–1056. doi:10.1017/S0025315407056378

    Article  Google Scholar 

  • Silva ACCD, Castilhos JC, Santos EAP, Brondízio LS, Bugoni L (2010) Efforts to reduce sea turtle bycatch in the shrimp fishery in northeastern Brazil through a co-management process. Ocean Coast Manage 53:570–576. doi:10.1016/j.ocecoaman.2010.06.016

    Article  Google Scholar 

  • Silva ACCD, Santos EAP, Oliveira FLC, Weber MI, Batista JAF, Serafini TZ, Castilhos JC (2011) Satellite-tracking reveals multiple foraging strategies and threats for olive ridley turtles in Brazil. Mar Ecol Prog Ser 443:237–247. doi:10.3354/meps09427

    Article  Google Scholar 

  • Sotiropoulos MA, Tonn WN, Wassenaar LI (2004) Effects of lipid extraction on stable carbon and nitrogen isotope analyses of fish tissues: potential consequences for foodweb studies. Ecol Freshw Fish 13:155–160. doi:10.1111/j.1600-0633.2004.00056.x

    Article  Google Scholar 

  • Turner Tomaszewicz CN, Seminoff JA, Peckham SH, Avens L, Kurle CM (2017) Intrapopulation variability in the timing of ontogenetic habitat shifts in sea turtles revealed using δ 15N values from bone growth rings. J Anim Ecol 86:694–704. doi:10.1111/1365-2656.12618

    Article  Google Scholar 

  • Vander Zanden HB, Bjorndal KA, Mustin W, Ponciano JM, Bolten AB (2012) Inherent variation in stable isotope values and discrimination factors in two life stages of green turtles. Physiol Biochem Zool 85:431–441. doi:10.1086/666902

    Article  CAS  Google Scholar 

  • Vander Zanden HB, Bjorndal KA, Bolten AB (2013) Temporal consistency and individual specialization in resource use by green turtles in successive life stages. Oecologia 173:767–777. doi:10.1007/s00442-013-2655-2

    Article  Google Scholar 

  • Vander Zanden HB, Tucker AD, Bolten AB, Reich KJ, Bjorndal KA (2014) Stable isotopic comparison between loggerhead sea turtle tissues. Rapid Commun Mass Spectrom 28:2059–2064. doi:10.1002/rcm.6995

    Article  CAS  Google Scholar 

  • Vander Zanden MJ, Clayton MK, Moody EK, Solomon CT, Weidel BC (2015) Stable isotope turnover and half-life in animal tissues: a literature synthesis. PLoS One 10:e0116182. doi:10.1371/journal.pone.0116182

    Article  Google Scholar 

  • Vander Zanden HB, Bolten AB, Tucker AD, Hart KM, Lamont MM, Fujisaki I, Reich KJ, Addison DS, Mansfield KL, Phillips KF, Pajuelo M, Bjorndal KA (2016) Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill. Ecol Appl 26:2145–2155. doi:10.1002/eap.1366

    Article  Google Scholar 

  • Whiting SD, Long JL, Coyne LM (2007) Migration routes and foraging behaviour of olive ridley turtles Lepidochelys olivacea in northern Australia. Endang Species Res 3:1–9. doi:10.3354/esr003001

    Article  Google Scholar 

  • Witzell WN (1983) Synopsis of biological data on the hawksbill sea turtle Eretmochelys imbricata (Linnaeus 1766). FAO Fisheries Synopsis No. 137

Download references

Acknowledgements

We acknowledge the TAMAR/ICMBio staff for help with sampling; special thanks to Maria Angela Marcovaldi, Jaqueline Castilhos, Roberto Garcia, Adriano Henrique, Buiú, Ederson Luiz Fonseca, Fabio Lira, Mari Weber, and veterinarians for their support. Authors are also grateful to Agnaldo S. Martins, Eduardo R. Secchi, Paul G. Kinas, Manuel Haimovici, Silvina Botta, and two reviewers for careful reading and insightful suggestions on previous versions of the manuscript. RP received financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). LB is a research fellow of the Brazilian CNPq, National Council for Scientific and Technological Development (Proc. No. 310550/2015-7). This research is part of the PhD thesis written by RP under the guidance of LB and was authorized under the license number 36852-2 (SISBIO - Sistema de Autorização e Informação em Biodiversidade).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberta Petitet.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

R. Petitet received financial support from the ‘Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCAPES’ (Ministry of Education). L. Bugoni received a Research Fellowship from CNPq (PQ 310550/2015-7). This research is part of the PhD thesis written by R.P. under the guidance of L.B. and was authorized under the license number 36852-2 (SISBIO - Sistema de Autorização e Informação em Biodiversidade).

Ethical approval

This article does not contain any studies with human participants. All applicable international, national, and institutional guidelines for the care of animals found stranded alive were followed. We did not conduct experiments with animals.

Additional information

Responsible Editor: Y. Cherel.

Reviewed by H. B. Vander Zanden and undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 240 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petitet, R., Bugoni, L. High habitat use plasticity by female olive ridley sea turtles (Lepidochelys olivacea) revealed by stable isotope analysis in multiple tissues. Mar Biol 164, 134 (2017). https://doi.org/10.1007/s00227-017-3163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3163-4

Navigation