Skip to main content

Latitudinal incidence of phototrophic shell-degrading endoliths and their effects on mussel bed microclimates

Abstract

Aggregations of organisms commonly benefit their members by mitigating the effects of predators and environmental stresses. Mussel aggregations also form important intertidal matrices that support associated infaunal communities, the structures of which are largely shaped by the conditions within the interstitial spaces. Intertidal mussels are frequently parasitized by phototrophic endoliths that infest the shell and have thermoregulatory effects on both solitary and aggregated mussels by changing shell albedo. A large-scale sampling was carried out May–June 2016 along Portuguese and Moroccan shores to investigate a latitudinal gradient of endolithic infestation of the intertidal mussel Mytilus galloprovincialis. Endolithic infestation increased towards lower latitudes most likely as a response of greater light availability. Additionally, artificial beds of either 100% non-infested or infested biomimetic mussels were used to test whether infestation alters the temperature and humidity of the interstitial spaces within beds, and if mussels surrounded by infested mussels experience lower body temperatures than those surrounded by non-infested ones. Conditions within beds of infested mussels were significantly cooler and more humid than in non-infested beds and individuals in the centre of infested mussel beds experienced significantly lower body temperatures. Under a scenario of warming climate, endolithic infestation of mussel beds might thus represent an ecological advantage not only for M. galloprovincialis as a species but also for the associated communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070

    Google Scholar 

  2. Bates AE, Leiterer F, Wiedeback ML, Poulin R (2011) Parasitized snails take the heat: a case of host manipulation? Oecologia 167:613–621. doi:10.1007/s00442-011-2014-0

    CAS  Article  Google Scholar 

  3. Christianen MJA, van der Heide T, Holthuijsen SJ, van der Reijden KJ, Borst ACW, Olff H (2016) Biodiversity and food web indicators of community recovery in intertidal shellfish reefs. Biol Conserv. doi:10.1016/j.biocon.2016.1009.1028

    Google Scholar 

  4. Ćurin M, Peharda M, Calcinai B, Golubić S (2014) Incidence of damaging endolith infestation of the edible mytilid bivalve Modiolus barbatus. Mar Biol Res 10:179–189. doi:10.1080/17451000.2013.814793

    Article  Google Scholar 

  5. Feare CJ (1971) The adaptive significance of aggregation behaviour in the dogwhelk Nucella lapillus (L.). Oecologia 7:117–126. doi:10.1007/bf00346354

    CAS  Article  Google Scholar 

  6. Fellous S, Salvaudon L (2009) How can your parasites become your allies? Trends Parasitol 25:62–66. doi:10.1016/j.pt.2008.11.010

    Article  Google Scholar 

  7. Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca2+ transport. Proc Natl Acad Sci USA 107:21749–21754. doi:10.1073/pnas.1011884108

    CAS  Article  Google Scholar 

  8. Garrity SD (1984) Some adaptations of gastropods to physical stress on a tropical rocky shore. Ecology 65:559–574. doi:10.2307/1941418

    Article  Google Scholar 

  9. Gazeau F, Alliouane S, Bock C, Bramanti L, Correa ML, Gentile M, Hirse T, Pörtner H-O, Ziveri P (2014) Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front Mar Sci. doi:10.3389/fmars.2014.00062

    Google Scholar 

  10. Harley CDG (2008) Tidal dynamics, topographic orientation, and temperature-mediated mass mortalities on rocky shores. Mar Ecol Prog Ser 371:37–46. doi:10.3354/meps07711

    Article  Google Scholar 

  11. Harley CDG (2011) Climate change, keystone predation, and biodiversity loss. Science 334:1124–1127. doi:10.1126/science.1210199

    CAS  Article  Google Scholar 

  12. Helmuth B (1998) Intertidal mussel microclimates: predicting the body temperature of a sessile invertebrate. Ecol Monogr 68:51–74. doi:10.2307/2657143

    Article  Google Scholar 

  13. Helmuth B, Hofmann GE (2001) Microhabitats, thermal heterogeneity, and patterns of physiological stress in the rocky intertidal zone. Biol Bull 201:374–384. doi:10.2307/1543615

    CAS  Article  Google Scholar 

  14. Helmuth B, Broitman BR, Blanchette CA, Gilman S, Halpin P, Harley CD, O’Donnell MJ, Hofmann GE, Menge B, Strickland D (2006) Mosaic patterns of thermal stress in the rocky intertidal zone: implications for climate change. Ecol Monogr 76:461–479. doi:10.1890/0012-9615(2006)076[0461:MPOTSI]2.0.CO;2

    Article  Google Scholar 

  15. Helmuth B, Yamane L, Lalwani S, Matzelle A, Tockstein A, Gao N (2011) Hidden signals of climate change in intertidal ecosystems: what (not) to expect when you are expecting. J Exp Mar Bio Ecol 400:191–199. doi:10.1016/j.jembe.2011.02.004

    Article  Google Scholar 

  16. Helmuth B, Choi F, Matzelle A, Torossian JL, Morello SL, Mislan KAS, Yamane L, Strickland D, Szathmary PL, Gilman SE, Tockstein A, Hilbish TJ, Burrows MT, Power AM, Gosling E, Mieszkowska N, Harley CDG, Nishizaki M, Carrington E, Menge B, Petes L, Foley MM, Johnson A, Poole M, Noble MM, Richmond EL, Robart M, Robinson J, Sapp J, Sones J, Broitman BR, Denny MW, Mach KJ, Miller LP, O’Donnell M, Ross P, Hofmann GE, Zippay M, Blanchette C, Macfarlan JA, Carpizo-Ituarte E, Ruttenberg B, Peña Mejía CE, McQuaid CD, Lathlean J, Monaco CJ, Nicastro KR, Zardi G (2016) Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci Data 3:160087. doi:10.1038/sdata.2016.87

    Article  Google Scholar 

  17. Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259. doi:10.1111/j.1365-2699.2010.02386.x

    Article  Google Scholar 

  18. Kaehler S (1999) Incidence and distribution of phototrophic shell-degrading endoliths of the brown mussel Perna perna. Mar Biol 135:505–514. doi:10.1007/s002270050651

    Article  Google Scholar 

  19. Kaehler S, McQuaid CD (1999) Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. Mar Biol 135:497–503. doi:10.1007/s002270050650

    Article  Google Scholar 

  20. Lathlean JA, Seuront L, McQuaid CD, Ng TP, Zardi GI, Nicastro KR (2016a) Size and position (sometimes) matter: small-scale patterns of heat stress associated with two co-occurring mussels with different thermoregulatory behaviour. Mar Biol 163:189. doi:10.1007/s00227-016-2966-z

    Article  Google Scholar 

  21. Lathlean JA, Seuront L, McQuaid CD, Ng TP, Zardi GI, Nicastro KR (2016b) Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels. PLoS One 11:e0152556. doi:10.1371/journal.pone.0152556

    Article  Google Scholar 

  22. Mao Che L, Le Campion-Alsumard T, Boury-Esnault N, Payri C, Golubic S, Bézac C (1996) Biodegradation of shells of the black pearl oyster, Pinctada margaritifera var. cumingii, by microborers and sponges of French Polynesia. Mar Biol 126:509–519. doi:10.1007/bf00354633

    Article  Google Scholar 

  23. Marquet N, Nicastro KR, Gektidis M, McQuaid CD, Pearson GA, Serrão EA, Zardi GI (2013) Comparison of phototrophic shell-degrading endoliths in invasive and native populations of the intertidal mussel Mytilus galloprovincialis. Biol Invasions 15:1253–1272. doi:10.1007/s10530-012-0363-1

    Article  Google Scholar 

  24. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297. doi:10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2

    Article  Google Scholar 

  25. Mouritsen KN, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:101–117. doi:10.1017/s0031182002001476

    Google Scholar 

  26. Nicastro KR, Zardi GI, McQuaid CD, Pearson GA, Serrao EA (2012) Love thy neighbour: group properties of gaping behaviour in mussel aggregations. PLoS One 7:e47382. doi:10.1371/journal.pone.0047382

    CAS  Article  Google Scholar 

  27. O’Donnell MJ (2008) Reduction of wave forces within bare patches in mussel beds. Mar Ecol Progr Ser 362:157–167. doi:10.3354/meps07435

    Article  Google Scholar 

  28. Parrish JK, Edelstein-Keshet L (1999) Complexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284:99–101. doi:10.1126/science.284.5411.99

    CAS  Article  Google Scholar 

  29. Peharda M, Calcinai B, Puljas S, Golubic S, Arapov J, Thebault J (2015) Endoliths in Lithophaga lithophaga shells-variation in intensity of infestation and species occurrence. Mar Environ Res 108:91–99. doi:10.1016/j.marenvres.2015.05.002

    CAS  Article  Google Scholar 

  30. Poulin R (1995) “Adaptive” changes in the behaviour of parasitized animals: a critical review. Int J Parasitol 25:1371–1383. doi:10.1016/0020-7519(95)00100-X

    CAS  Article  Google Scholar 

  31. Ricciardi A, Whoriskey FG, Rasmussen JB (1997) The role of the zebra mussel (Dreissena polymorpha) in structuring macroinvertebrate communities on hard substrata. Can J Fish Aquat Sci 54:2596–2608. doi:10.1139/f97-174

    Article  Google Scholar 

  32. Rojas JM, Castillo SB, Escobar JB, Shinen JL, Bozinovic F (2013) Huddling up in a dry environment: the physiological benefits of aggregation in an intertidal gastropod. Mar Biol 160:1119–1126. doi:10.1007/s00227-012-2164-6

    Article  Google Scholar 

  33. Sagarin RD, Barry JP, Gilman SE, Baxter CH (1999) Climate-related change in an intertidal community over short and long time scales. Ecol Monogr 69:465–490. doi:10.1890/0012-9615(1999)069[0465:CRCIAI]2.0.CO;2

    Article  Google Scholar 

  34. Somero GN (2002) Thermal physiology and vertical zonation of intertidal animals: optima, limits, and costs of living. Integr Comp Biol 42:780–789. doi:10.1093/icb/42.4.780

    Article  Google Scholar 

  35. Stillman JH, Somero GN (2000) A comparative analysis of the upper thermal tolerance limits of eastern Pacific porcelain crabs, genus Petrolisthes: influences of latitude, vertical zonation, acclimation, and phylogeny. Physiol Biochem Zool 73:200–208. doi:10.1086/316738

    CAS  Article  Google Scholar 

  36. Thiel M, Ullrich N (2002) Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30. doi:10.1007/s10152-001-0098-3

    Article  Google Scholar 

  37. van de Koppel J, Gascoigne JC, Theraulaz G, Rietkerk M, Mooij WM, Herman PMJ (2008) Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems. Science 322:739–742. doi:10.1126/science.1163952

    Article  Google Scholar 

  38. Warren SG, Hahn CJ, London J, Chervin RM, Jenne RL (1986) Global distribution of total cloud cover and cloud type amounts over land. NCAR Technical Note TN-273 + STR. doi:10.5065/D6QC01D1

  39. Wetherald RT, Manabe S (1980) Cloud cover and climate sensitivity. J Atmos Sci 37:1485–1510. doi:10.1175/1520-0469(1980)037<1485:CCACS>2.0.CO;2

    Article  Google Scholar 

  40. Zardi GI, Nicastro KR, McQuaid CD, Gektidis M (2009) Effects of endolithic parasitism on invasive and indigenous mussels in a variable physical environment. PLoS One 4:e6560. doi:10.1371/journal.pone.0006560

    Article  Google Scholar 

  41. Zardi GI, Nicastro KR, McQuaid CD, Ng TP, Lathlean J, Seuront L (2016) Enemies with benefits: parasitic endoliths protect mussels against heat stress. Sci Rep 6:31413. doi:10.1038/srep31413

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was funded by projects UID/Multi/04326/2013 and IF/01413/2014/CP1217/CT0004 from the Fundação para a Ciência e Tecnologia (FCT-MEC, Portugal) and supported by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology and the National Research Foundation and a scholarship from the South African National Research Foundation (NRF). We would like to thank the reviewers for their constructive and helpful comments, which helped us to improve the manuscript. We are grateful to R. Silva and P. Madeira for laboratory assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Carla R. Lourenço.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The research was carried out following the applicable international, and/or institutional guidelines for the sampling and transport of the species.

Additional information

Reviewed by S. Golubic and undisclosed experts.

Responsible Editor: J. Grassle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 296 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lourenço, C.R., Nicastro, K.R., McQuaid, C.D. et al. Latitudinal incidence of phototrophic shell-degrading endoliths and their effects on mussel bed microclimates. Mar Biol 164, 129 (2017). https://doi.org/10.1007/s00227-017-3160-7

Download citation

Keywords

  • Shell Length
  • Mussel Shell
  • Lower Body Temperature
  • Intertidal Mussel
  • Intertidal Organism