Skip to main content

Advertisement

Log in

Seawater environmental DNA reflects seasonality of a coastal fish community

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Coastal marine fish populations are in decline due to overfishing, habitat destruction, climate change and invasive species. Seasonal monitoring is important for detecting temporal changes in the composition of fish communities, but current monitoring is often non-existent or limited to annual or semi-annual surveys. In the present study, we investigate the potential of using environmental DNA (eDNA) metabarcoding of seawater samples to detect the seasonal changes in a coastal marine fish community. Water sampling and snorkelling visual census were performed over 1 year (from 23rd of August 2013 to 11th of August 2014) at a temperate coastal habitat in Denmark (55°45′39″N, 12°35′59″E) and compared to long-term data collected over a 7-year period. We used Illumina sequencing of PCR products to demonstrate that seawater eDNA showed compositional changes in accordance with seasonal changes in the fish community. The vast majority of fish diversity observed in the study area by snorkelling was recovered from sequencing, although the overlap between methods varied widely among sampling events. In total, 24 taxa were detected by both methods, while five taxa were only detected using eDNA and three taxa were only detected by snorkelling. A limitation of the applied primers was the lack of resolution to species level in a few diverse families, and varying sequencing depth between samples represents a potential bias. However, our study demonstrates the utility of eDNA for recovering seasonal variation in marine fish communities, knowledge of which is essential for standardised long-term monitoring of marine biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andriashev AP (1986) Zoarcidae. In: Whitehead PJP, Bauchot M-L, Hureau J-C, Nielsen J, Tortonese E (eds) Fishes of the North-Eastern Atlantic and the mediterranean. UNESCO, Geneva, pp 1130–1150

    Google Scholar 

  • Angantyr LA, Rasmussen J, Göransson P, Jeppesen JP, Svedäng H (2007) Øresund som levested. In: Angantyr LA, Rasmussen J, Göransson P, Nerpin L (eds) Fisk i Øresund. Øresundsvandsamarbejdet, p 7. http://www.oresundsvand.dk

  • Azour F, van Deurs M, Behrens J, Carl H, Hüssy K, Greisen K, Ebert R, Møller PR (2015) Invasion rate and population characteristics of the invasive round goby (Neogobius melanostomus) at an established, high-density locality and a recently invaded, low-density locality. Aquat Biol 24:41–52

    Article  Google Scholar 

  • Bagge O (1964) Some observations on the biology of the lumpsucker (Cyclopterus lumpus). In: ICES CM 1964, Baltic-Belt Seas Commitee 150, p 7

  • Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chadderton WL, Lodge DM (2014) Environmental conditions influence eDNA persistence in aquatic systems. Environ Sci Technol 48:1819–1827

    Article  CAS  Google Scholar 

  • Bergman PS, Schumer G, Blankenship S, Campbell E (2016) Detection of adult green sturgeon using environmental DNA analysis. PLoS One 11:e0153500

    Article  Google Scholar 

  • Boyer F, Mercier C, Bonin A, Le Bras Y, Taberlet P, Coissac E (2016) obitools: a unix-inspired software package for DNA metabarcoding. Mol Ecol Resour 16:176–182

    Article  CAS  Google Scholar 

  • Carl H (2012a) Brasen. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 115–126

    Google Scholar 

  • Carl H (2012b) Suder. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 295–303

    Google Scholar 

  • Carl H (2012c) Grundling. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 203–212

    Google Scholar 

  • Carl H (2012d) Europæisk malle. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 339–349

    Google Scholar 

  • Coissac E (2012) OligoTag: a program for designing sets of tags for next-generation sequencing of multiplexed samples. In: Pompanon F, Bonin A (eds) Data production and analysis of population genomics: methods and protocols. Humana Press, New York, pp 13–31

    Chapter  Google Scholar 

  • Dansk Ornitologisk Forening (2014) Ederfugl (Somateria mollissima). DOFbasen. http://dofbasen.dk/ART/art.php?art=02060. Accessed 31 Jan 2017

  • De Barba M, Miquel C, Boyer F, Mercier C, Rioux D, Coissac E, Taberlet P (2014) DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet. Mol Ecol Resour 14:306–323

    Article  Google Scholar 

  • Dejean T, Valentini A, Duparc A, Pellier-Cuit S, Pompanon F, Taberlet P, Miaud C (2011) Persistence of environmental DNA in freshwater ecosystems. PLoS One 6:e23398

    Article  CAS  Google Scholar 

  • FAO (2011) Fishery and aquaculture statistics. FAO Yearbook, Rome

    Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  Google Scholar 

  • Ficetola GF, Coissac E, Zundel S, Riaz T, Shehzad W, Bessière J, Taberlet P, Pompanon F (2010) An in silico approach for the evaluation of DNA barcodes. BMC Genom 11:434

    Article  Google Scholar 

  • Foote AD, Thomsen PF, Sveegaard S, Wahlberg M, Kielgast J, Kyhn LA, Salling AB, Galatius A, Orlando L, Gilbert MTP (2012) Investigating the potential use of environmental DNA (eDNA) for genetic monitoring of marine mammals. PLoS One 7:e41781

    Article  CAS  Google Scholar 

  • Fossheim M, Primicerio R, Johannesen E, Ingvaldsen RB, Aschan MM, Dolgov AV (2015) Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat Clim Chang 5:673–677

    Article  Google Scholar 

  • Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, Spear SF, McKee A, Oyler-McCance SJ, Cornman RS, Laramie MB, Mahon AR, Lance RF, Pilliod DS, Strickler KM, Waits LP, Fremier AK, Takahara T, Herder JE, Taberlet P (2016) Critical considerations for the application of environmental DNA methods to detect aquatic species. Method Ecol Evol 7:1299–1307

    Article  Google Scholar 

  • Green SJ, Akins JL, Maljković A, Côté IM (2012) Invasive lionfish drive atlantic coral reef fish declines. PLoS One 7:e32596

    Article  CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):4–9. http://palaeo-electronica.org/20011/past/issue1_01.htm

    Google Scholar 

  • Heessen HJL (2015) Eelpouts (Zoarcidae). In: Heessen HJL, Daan N, Ellis JR (eds) Fish atlas of the Celtic Sea, North Sea, and Baltic Sea, Based on international research-vessel surveys. Wageningen Academic Publishers, Wageningen, pp 358–364

    Chapter  Google Scholar 

  • Holbrook SJ, Schmitt RJ, Stephens JS (1997) Changes in an assemblage of temperate reef fishes associated with a climate shift. Ecol Appl 7:1299–1310

    Article  Google Scholar 

  • Holmlund CM, Hammer M (1999) Ecosystem services generated by fish populations. Ecol Econ 29:253–268

    Article  Google Scholar 

  • Hutchings JA (2000) Collapse and recovery of marine fishes. Nature 406:882–885

    Article  CAS  Google Scholar 

  • ICES (2013) Fish stocks: counting the uncountable?. ICES, Copenhagen

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, Peterson CH, Steneck RS, Tegner MJ, Warner RR (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–637

    Article  CAS  Google Scholar 

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253

    Article  CAS  Google Scholar 

  • Jørgensen OA, Bastardie F, Eigaard OR (2014) Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland. ICES J Mar Sci J Cons 71:845–852

    Article  Google Scholar 

  • Jurasinski G, Retzer V (2012) Simba: a collection of functions for similarity analysis of vegetation data. R package version 0.3-5. https://CRAN.R-project.org/package=simba. Accessed 28 Mar 2017

  • Kenchington E, Yashayaev I, Tendal OS, Jørgensbye H (2016) Water mass characteristics and associated fauna of a recently discovered Lophelia pertusa. Polar Biol 40:321–337

    Article  Google Scholar 

  • MacKenzie BR, Payne MR, Boje J, Høyer JL, Siegstad H (2014) A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob Change Biol 20:2484–2491

    Article  Google Scholar 

  • Maruyama A, Nakamura K, Yamanaka H, Kondoh M, Minamoto T (2014) The release rate of environmental DNA from juvenile and adult fish. PLoS One 9:e114639

    Article  Google Scholar 

  • NCBI (2017) How to submit data to GenBank. GenBank. https://www.ncbi.nlm.nih.gov/genbank/submit/. Accessed 21 Mar 2017

  • Nielsen JG (2012) Hork. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 561–568

    Google Scholar 

  • Nielsen JG, Krag M (2012) Knude. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 503–513

    Google Scholar 

  • Pauly D, Christensen V, Guénette S, Pitcher TJ, Sumaila UR, Walters CJ, Watson R, Zeller D (2002) Towards sustainability in world fisheries. Nature 418:689–695

    Article  CAS  Google Scholar 

  • Pedersen MI, Carl H (2012) Europæisk ål. In: Carl H, Møller PR (eds) Atlas over danske ferskvandsfisk. Statens Naturhistoriske Museum, Copenhagen, pp 97–112

    Google Scholar 

  • Pilliod DS, Goldberg CS, Arkle RS, Waits LP (2014) Factors influencing detection of eDNA from a stream-dwelling amphibian. Mol Ecol Resour 14:109–116

    Article  CAS  Google Scholar 

  • Port JA, O’Donnell JL, Romero-Maraccini OC, Leary PR, Litvin SY, Nickols KJ, Yamahara KM, Kelly RP (2016) Assessing vertebrate biodiversity in a kelp forest ecosystem using environmental DNA. Mol Ecol 25:527–541

    Article  CAS  Google Scholar 

  • RStudio Team (2016) RStudio: integrated development for R. RStudio Inc, Boston, MA

    Google Scholar 

  • Shelton AO, O’Donnell JL, Samhouri JF, Lowell N, Williams GD, Kelly RP (2016) A framework for inferring biological communities from environmental DNA. Ecol Appl 26:1645–1659

    Article  Google Scholar 

  • Sigsgaard EE, Nielsen IB, Bach SS, Lorenzen ED, Robinson DP, Knudsen SW, Pedersen MW, Jaidah MA, Orlando L, Willerslev E, Møller PR, Thomsen PF (2016) Population characteristics of a large whale shark aggregation inferred from seawater environmental DNA. Nat Ecol Evol 1:0004

    Article  Google Scholar 

  • Southward AJ, Langmead O, Hardman-Mountford NJ, Aiken J, Boalch GT, Dando PR, Genner MJ, Joint I, Kendall MA, Halliday NC, Harris RP, Leaper R, Mieszkowska N, Pingree RD, Richardson AJ, Sims DW, Smith T, Walne AW, Hawkins SJ (2004) Long-term oceanographic and ecological research in the Western English Channel. Adv Mar Biol 47:1–105

    Article  Google Scholar 

  • Spear SF, Groves JD, Williams LA, Waits LP (2015) Using environmental DNA methods to improve detectability in a hellbender (Cryptobranchus alleganiensis) monitoring program. Biol Conserv 183:38–45

    Article  Google Scholar 

  • Spens J, Evans AR, Halfmaerten D, Knudsen SW, Sengupta ME, Mak SST, Sigsgaard EE, Hellström M (2016) Comparison of capture and storage methods for aqueous macrobial eDNA using an optimized extraction protocol: advantage of enclosed filter. Methods Ecol Evol. doi:10.1111/2041-210X.12683

    Google Scholar 

  • Stoeckle MY, Soboleva L, Charlop-Powers Z, Doi H (2017) Aquatic environmental DNA detects seasonal fish abundance and habitat preference in an urban estuary. PLoS One 12 (4):e0175186

    Article  Google Scholar 

  • Stoesser G, Baker W, Broek VDA, Camon E, Garcia-Pastor M, Kanz C, Kulikova T, Leinonen R, Lin Q, Lombard V, Lopez R, Redaschi N, Stoehr P, Tuli MA, Tzouvara K, Vaughan R (2002) The EMBL nucleotide sequence database. Nucl Acid Res 30:21–26

    Article  CAS  Google Scholar 

  • Støttrup JG, Sparrevohn CR, Nicolajsen H, Kristensen LD (2012) Registrering af fangster i de danske kystområder med standardredskaber. Nøglefiskerrapporten for årene 2008–2010. DTU Aqua-rapport nr. 252–2012. National Institute for Aquatic Resources, Technical University of Denmark: 94 p

  • Strickler KM, Fremier AK, Goldberg CS (2015) Quantifying effects of UV-B, temperature, and pH on eDNA degradation in aquatic microcosms. Biol Conserv 183:85–92

    Article  Google Scholar 

  • Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z (2012) Estimation of fish biomass using environmental DNA. PLoS One 7:e35868

    Article  CAS  Google Scholar 

  • Thomsen PF, Willerslev E (2015) Environmental DNA: an emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv 183:4–18

    Article  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Wiuf C, Rasmussen M, Gilbert MTP, Orlando L, Willerslev E (2012a) Monitoring endangered freshwater biodiversity using environmental DNA. Mol Ecol 21:2565–2573

    Article  CAS  Google Scholar 

  • Thomsen PF, Kielgast J, Iversen LL, Møller PR, Rasmussen M, Willerslev E (2012b) Detection of a diverse marine fish fauna using environmental DNA from seawater samples. PLoS One 7:e41732

    Article  CAS  Google Scholar 

  • Thomsen PF, Møller PR, Sigsgaard EE, Knudsen SW, Jørgensen OA, Willerslev E (2016) Environmental DNA from seawater samples correlate with trawl catches of subarctic, deepwater fishes. PLoS One 11:e0165252

    Article  Google Scholar 

  • Ushio M, Murakami H, Masuda R, Sado T, Miya M, Sakurai S, Yamanaka H, Minamoto T, Kondoh M (2017) Quantitative monitoring of multispecies environmental DNA using high-throughput sequencing. BioRxiv. doi:10.1101/113472

  • Valentini A, Taberlet P, Miaud C, Civade R, Herder J, Thomsen PF, Bellemain E, Besnard A, Coissac E, Boyer F, Gaboriaud C, Jean P, Poulet N, Roset N, Copp GH, Peroux T, Crivelli AJ, Olivier A, Acqueberge M, Brun M, Møller PR, Willerslev E, Dejean T (2016) Next-generation monitoring of aquatic biodiversity using environmental DNA metabarcoding. Mol Ecol 25:929–942

    Article  CAS  Google Scholar 

  • Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795

    Article  CAS  Google Scholar 

  • Wisz MS, Broennimann O, Grønkjaer P, Møller PR, Olsen SM, Swingedouw D, Hedeholm RB, Nielsen EE, Guisan A, Pellissier L (2015) Arctic warming will promote Atlantic-Pacific fish interchange. Nat Clim Chang 5:261–265

    Article  Google Scholar 

  • Yamamoto S, Minami K, Fukaya K, Takahashi K, Sawada H, Murakami H, Tsuji S, Hashizume H, Kubonaga S, Horiuchi T, Hongo M, Nishida J, Okugawa Y, Fujiwara A, Fukuda M, Hidaka S, Suzuki KW, Miya M, Araki H, Yamanaka H, Maruyama A, Miyashita K, Masuda R, Minamoto T, Kondoh M (2016) Environmental DNA as a “snapshot”of fish distribution: a case study of japanese jack mackerel in Maizuru Bay, Sea of Japan. PloS One 11:e0149786

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Danish National Research Foundation with Grant DNRF94, which was awarded to Prof. Eske Willerslev. We thank Aage V. Jensen’s foundations, which have funded the National Fish Atlas with Grant 100307-28272. We thank Prof. Eske Willerslev for project support and providing facilities for carrying out the research. We would like to thank Lillian A. Petersen and the National High-throughput DNA Sequencing Centre for help with sequencing. Morten Rasmussen is thanked for providing a custom-made script and bioinformatic assistance during data analysis of the first test sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Francis Thomsen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: T. Reusch.

Reviewed by K. Praebel and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1922 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigsgaard, E.E., Nielsen, I.B., Carl, H. et al. Seawater environmental DNA reflects seasonality of a coastal fish community. Mar Biol 164, 128 (2017). https://doi.org/10.1007/s00227-017-3147-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3147-4

Keywords

Navigation