Skip to main content

Advertisement

Log in

Asymmetric hybridization and introgression between sibling species of the pufferfish Takifugu that have undergone explosive speciation

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Pufferfishes belonging to the genus Takifugu are a prominent example of recent adaptive radiations of marine fishes. Using amplified fragment length polymorphism (AFLP) and mitochondrial DNA (mtDNA) markers, the genetic characteristics of natural hybrids between two sibling species, Takifugu snyderi and Takifugu stictonotus, were investigated to gain insights into the role of hybridization in rapid diversification. Numerous early generations of hybrids (131 F1 hybrids and 18 first-generation backcrosses) were screened by Bayesian assignment procedures from samples collected at three sites off the Pacific coast of eastern Honshu, Japan (Ibaraki: 36°21′N, 140°37′E; Fukushima: 37°03′N, 141°03′E; Iwate: 40°02′N, 141°59′E), during 2012–2014. Analysis of mtDNA indicated that hybridization is highly directional, as the majority of the F1 hybrids (75.6%) were offspring between T. stictonotus females and T. snyderi males. Among the 18 backcrosses, 17 were toward T. snyderi and one was toward T. stictonotus. Two of 118 individuals classified as genetically pure T. snyderi based on AFLP markers were affected by mtDNA introgression from T. stictonotus. These results suggest that interspecific gene flow has been highly asymmetrical toward T. snyderi, which may partly explain the marked difference in intraspecific genetic diversity between the two species. The proportion of F1 hybrids in the Ibaraki and Fukushima areas is exceptionally high compared with that of other marine fishes, indicating the need for continuous monitoring of hybridization and its impact on integrity of each parental species under the changing marine environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe T, Tabeta O (1994) Pufferfishes available in Japan: an illustrated guide to their identification. Chuouhouki Publ. Co., Tokyo

    Google Scholar 

  • Albert V, Jónsson B, Bernatchez L (2006) Natural hybrids in Atlantic eels (Anguilla anguilla, A. rostrata): evidence for successful reproduction and fluctuating abundance in space and time. Mol Ecol 15:1903–1916. doi:10.1111/j.1365-294X.2006.02917.x

    Article  CAS  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  Google Scholar 

  • Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914. doi:10.1111/j.1365-294X.2005.02655.x

    Article  CAS  Google Scholar 

  • Burford MO, Bernardi G, Carr MH (2011) Analysis of individual year-classes of a marine fish reveals little evidence of first-generation hybrids between cryptic species in sympatric regions. Mar Biol 158:1815–1827. doi:10.1007/s00227-011-1694-7

    Article  Google Scholar 

  • Cahill JA, Stirling I, Kistler L, Salamzade R, Ersmark E, Fulton TL, Stiller M, Green RE, Shapiro B (2015) Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol Ecol 24:1205–1217. doi:10.1111/mec.13038

    Article  Google Scholar 

  • Duchesne P, Bernatchez L (2002) AFLPOP: a computer program for simulated and real population allocation, based on AFLP data. Mol Ecol Notes 2:380–383. doi:10.1046/j.1471-8286.2002.00251.x

    Article  CAS  Google Scholar 

  • Duvernell DD, Lindmeier JB, Faust KE, Whitehead A (2008) Relative influences of historical and contemporary forces shaping the distribution of genetic variation in the Atlantic killifish, Fundulus heteroclitus. Mol Ecol 17:1344–1360. doi:10.1111/j.1365-294X.2007.03648.x

    Article  Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361. doi:10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  Google Scholar 

  • Fujita S (1967) Artificial interspecific and intergeneric hybridizations among the Tetraodontid puffers (preliminary report). Jpn J Michurin Biol 3:5–11

    Google Scholar 

  • Gourbière S, Mallet J (2010) Are species real? The shape of the species boundary with exponential failure, reinforcement, and the “missing snowball”. Evol Int J Org Evol 64:1–24. doi:10.1111/j.1558-5646.2009.00844.x

    Article  Google Scholar 

  • Grant PR, Grant BR (1992) Hybridization of bird species. Science 256:193–197

    Article  CAS  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711. doi:10.1126/science.1070315

    Article  CAS  Google Scholar 

  • Heliconius Genome Consortium (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487:94–98. doi:10.1038/nature11041

    Google Scholar 

  • Herder F, Nolte AW, Pfaender J, Schwarzer J, Hadiaty RK, Schliewen UK (2006) Adaptive radiation and hybridization in Wallace’s Dreamponds: evidence from sailfin silversides in the Malili Lakes of Sulawesi. Proc R Soc B 273:2209–2217. doi:10.1098/rspb.2006.3558

    Article  Google Scholar 

  • Innan H, Terauchi R, Kahl G, Tajima F (1999) A method for estimating nucleotide diversity from AFLP data. Genetics 151:1157–1164

    CAS  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi:10.1093/bioinformatics/btn129

    Article  CAS  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi:10.1186/1471-2156-11-94

    Article  Google Scholar 

  • Kai W, Kikuchi K, Tohari S, Chew AK, Tay A, Fujiwara A, Hosoya S, Suetake H, Naruse K, Brenner S, Suzuki Y (2011) Integration of the genetic map and genome assembly of fugu facilitates insights into distinct features of genome evolution in teleosts and mammals. Genome Biol Evol 3:424–442. doi:10.1093/gbe/evr041

    Article  CAS  Google Scholar 

  • Kikuchi K, Kai W, Hosokawa A, Mizuno N, Suetake H, Asahina K, Suzuki Y (2007) The sex-determining locus in the tiger pufferfish, Takifugu rubripes. Genetics 175:2039–2042. doi:10.1534/genetics.106.069278

    Article  CAS  Google Scholar 

  • Laakkonen HM, Strelkov P, Lajus DL, Väinölä R (2015) Introgressive hybridization between the Atlantic and Pacific herrings (Clupea harengus and C. pallasii) in the north of Europe. Mar Biol 162:39–54. doi:10.1007/s00227-014-2564-x

    Article  CAS  Google Scholar 

  • Lamichhaney S, Berglund J, Almén MS, Maqbool K, Grabherr M, Martinez-Barrio A, Promerová M, Rubin C, Wang C, Zamani N, Grant BR, Grant PR, Webster MT, Andersson L (2015) Evolution of Darwin’s finches and their beaks revealed by genome sequencing. Nature 518:371–375. doi:10.1038/nature14181

    Article  CAS  Google Scholar 

  • Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi:10.1111/j.1365-294X.1994.tb00109.x

    Article  CAS  Google Scholar 

  • Mallet J (2005) Hybridization as an invasion of the genome. Trends Ecol Evol 20:229–237. doi:10.1016/j.tree.2005.02.010

    Article  Google Scholar 

  • Mallet J, Beltrán M, Neukirchen W, Linares M (2007) Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evol Biol 7:28. doi:10.1186/1471-2148-7-28

    Article  Google Scholar 

  • Masuda Y, Shinohara N, Takahashi Y, Tabeta O, Matsuura K (1991) Occurrence of natural hybrid between pufferfishes, Takifugu xanthopterus and T. vermicularis, in Ariake Bay, Kyushu, Japan. Nippon Suisan Gakkaishi 57:1247–1255

    Article  Google Scholar 

  • Mirimin L, Kerwath SE, Macey BM, Bester-van der Merwe AE, Lamberth SJ, Bloomer P, Roodt-Wilding R (2014) Identification of naturally occurring hybrids between two overexploited sciaenid species along the South African coast. Mol Phylogenet Evol 76:30–33. doi:10.1016/j.ympev.2014.02.010

    Article  CAS  Google Scholar 

  • Montanari SR, Hobbs JPA, Pratchett MS, Bay LK, Van Herwerden L (2014) Does genetic distance between parental species influence outcomes of hybridization among coral reef butterflyfishes? Mol Ecol 23:2757–2770. doi:10.1111/mec.12762

    Article  CAS  Google Scholar 

  • Muto N, Kai Y, Noda T, Nakabo T (2013) Extensive hybridization and associated geographic trends between two rockfishes Sebastes vulpes and S. zonatus (Teleostei: Scorpaeniformes: Sebastidae). J Evol Biol 26:1750–1762. doi:10.1111/jeb.12175

    Article  CAS  Google Scholar 

  • Nakabo T (2013) Fishes of Japan with pictorial keys to the species, 3rd edn. Tokai University Press, Tokyo

    Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859. doi:10.1038/nrg1707

    Article  CAS  Google Scholar 

  • Potts WM, Henriques R, Santos CV, Munnik K, Ansorge I, Dufois F, Booth AJ, Kirchner C, Sauer WHH, Shaw PW (2014) Ocean warming, a rapid distributional shift, and the hybridization of a coastal fish species. Glob Change Biol 20:2765–2777. doi:10.1111/gcb.12612

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  Google Scholar 

  • Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Magnussen E, Jónsson B, Jiang X, Cheng L, Bekkevold D, Maes GE, Bernatchez L, Hansen MM (2014) Assessing patterns of hybridization between North Atlantic eels using diagnostic single-nucleotide polymorphisms. Heredity 112:627–637. doi:10.1038/hdy.2013.145

    Article  CAS  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed 20 January 2016

  • Santini F, Nguyen MTT, Sorenson L, Waltzek TB, Lynch Alfaro JW, Eastman JM, Alfaro ME (2013) Do habitat shifts drive diversification in teleost fishes? An example from the pufferfishes (Tetraodontidae). J Evol Biol 26:1003–1018. doi:10.1111/jeb.12112

    Article  CAS  Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207. doi:10.1016/j.tree.2004.01.003

    Article  Google Scholar 

  • Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44. doi:10.1111/j.1365-294X.2007.03529.x

    Article  Google Scholar 

  • Takahashi H, Goto A (2001) Evolution of East Asian ninespine sticklebacks as shown by mitochondrial DNA control region sequences. Mol Phylogenet Evol 21:135–155. doi:10.1006/mpev.2001.1001

    Article  CAS  Google Scholar 

  • Takahashi H, Takata K (2000) Multiple lineages of the mitochondrial DNA introgression from Pungitius pungitius (L.) to Pungitius tymensis (Nikolsky). Can J Fish Aquat Sci 57:1814–1833. doi:10.1139/f00-133

    Article  CAS  Google Scholar 

  • Takahashi H, Takeshita N, Tanoue H, Ueda S, Takeshima H, Komatsu T, Kinoshita I, Nishida M (2015) Severely depleted genetic diversity and population structure of a large predatory marine fish (Lates japonicus) endemic to Japan. Conserv Genet 16:1155–1165. doi:10.1007/s10592-015-0729-x

    Article  Google Scholar 

  • Takatsuki Y, Kuragano T, Shiga T, Bungi Y, Inoue H, Fujiwara H, Ariyoshi M (2007) Long-term trends in sea surface temperature adjacent to Japan. Sokko Jiho 74:S33–S87

    Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  Google Scholar 

  • Tian Y, Kidokoro H, Watanabe T, Igeta Y, Sakaji H, Ino S (2012) Response of yellowtail, Seriola quinqueradiata, a key large predatory fish in the Japan Sea, to sea water temperature over the last century and potential effects of global warming. J Mar Syst 91:1–10. doi:10.1016/j.jmarsys.2011.09.002

    Article  Google Scholar 

  • Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72. doi:10.1111/j.1365-294X.2005.02773.x

    Article  Google Scholar 

  • Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151. doi:10.1046/j.0962-1083.2001.01415.x

    Article  CAS  Google Scholar 

  • Vonlanthen P, Bittner D, Hudson AG, Young KA, Müller R, Lundsgaard-Hansen B, Roy D, Di Piazza S, Largiader CR, Seehausen O (2012) Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482:357–362. doi:10.1038/nature10824

    Article  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucl Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  Google Scholar 

  • Wagawa T, Kuroda H, Ito S, Kakehi S, Yamanome T, Tanaka K, Endoh Y, Kaga S (2015) Variability in water properties and predictability of sea surface temperature along Sanriku coast, Japan. Cont Shelf Res 103:12–22. doi:10.1016/j.csr.2015.04.016

    Article  Google Scholar 

  • Wirtz P (1999) Mother species–father species: unidirectional hybridization in animals with female choice. Anim Behav 58:1–12. doi:10.1006/anbe.1999.1144

    Article  CAS  Google Scholar 

  • Yamanoue Y, Miya M, Matsuura K, Miyazawa S, Tsukamoto N, Doi H, Takahashi H, Mabuchi K, Nishida M, Sakai H (2009) Explosive speciation of Takifugu: another use of fugu as a model system for evolutionary biology. Mol Biol Evol 26:623–629. doi:10.1093/molbev/msn283

    Article  CAS  Google Scholar 

  • Yasuda I (2003) Hydrographic structure and variability in the Kuroshio-Oyashio transition area. J Oceanogr 59:389–402

    Article  Google Scholar 

  • Yokogawa K, Urayama K (2000) Natural hybrids between two species of puffer, Takifugu vermicularis and T. poecilonotus, obtained from the Seto Inland Sea, Japan. Jpn J Ichthyol 47:67–73

    Google Scholar 

  • Young WP, Ostberg CO, Keim P, Thorgaard GH (2001) Genetic characterization of hybridization and introgression between anadromous rainbow trout (Oncorhynchus mykiss irideus) and coastal cutthroat trout (O. clarki clarki). Mol Ecol 10:921–930. doi:10.1046/j.1365-294X.2001.01247.x

    Article  CAS  Google Scholar 

  • Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913. doi:10.1046/j.1365-294x.1999.00620.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Kazuhiko Kurimoto, Naoto Itou, Tadahiro Soutome, Toru Sakuma, Shinichiro Ikeguchi, Hiroyuki Doi, and Harumi Sakai for their help in obtaining the samples and Youta Hazama, Kyoji Fijiwara, Tomoko Sato, and Yuko Nozaki for their help in the laboratory work. This work was supported in part by JSPS KAKENHI (Nos. 19580229 and 25440227) and by Grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (the special scheme project on regional developing strategy, Project No. 16822337).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takahashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All animals have been sampled and/or treated according to the national legislation in Japan. This article does not contain studies with human participants by any of the authors.

Additional information

Responsible Editor: T. Reusch.

Reviewed by Undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2732 KB)

Supplementary material 2 PDF 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takahashi, H., Toyoda, A., Yamazaki, T. et al. Asymmetric hybridization and introgression between sibling species of the pufferfish Takifugu that have undergone explosive speciation. Mar Biol 164, 90 (2017). https://doi.org/10.1007/s00227-017-3120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3120-2

Keywords

Navigation