Advertisement

Marine Biology

, 164:74 | Cite as

Phenolic concentrations of brown seaweeds and relationships to nearshore environmental gradients in Western Australia

  • Daniel H. van HeesEmail author
  • Ylva S. Olsen
  • Thomas Wernberg
  • Kathryn L. Van Alstyne
  • Gary A. Kendrick
Original Paper

Abstract

Phenolic compounds are found in all brown macroalgae and function as cell wall structure, UV protection and as herbivore deterrents. The concentrations of phenolic compounds vary among taxa and between temperate and tropical ecosystems. Australasia has high concentrations of soluble phenolics compared to other regions. Presently, relationships between phenolic concentrations and environmental gradients are unclear. The purpose of this study was to determine the soluble phenolic concentrations of brown seaweeds along temperate and tropical ecosystems of the Western Australia coastline. We tested the hypothesis that phenolic concentrations are related to local and broad-scale abiotic environmental gradients. Strong environmental gradients of coastal Western Australia provided the opportunity to characterize phenolic compounds across one large gradient. Phenolic concentrations of brown seaweeds at seven study locations varied across latitude with higher concentrations found at higher latitudes and were comparable to seaweeds from similar latitudes in Australia. This trend coincided with a negative relationship between photosynthetically active radiation and phenolic compounds, and a positive relationship with salinity. We also found phenolic concentrations were positively related to salinity in tropical Shark Bay but this was dependent on species. Environmental conditions are important in regulating concentrations of phenolic compounds. Multiple factors influence the concentrations of macroalgal phenolic compounds creating unique distributions among geographical regions. This study highlighted the importance of considering multiple factors when studying phenolic ecology and suggests photosynthetically active radiation and salinity as important drivers of phenolic compound distribution in Western Australia.

Keywords

Latitudinal gradient Macroalgae Photosynthetically active radiation Polyphenolics Salinity 

Notes

Acknowledgements

This study was carried out as part of the PhD thesis research of the first author at the University of Western Australia. We thank C. Tuckett, E. Gates, D. Bearham, R. McCallum, K. van Hees for their help with field logistics and sample collection, L. Mattio for help with species identification, M. Considine and G. Cawthray for assistance in laboratory analyses and the anonymous reviewers that helped improve this manuscript. Cygnet Bay sampling was funded by the Western Australian Marine Science Institution (WAMSI) Kimberley Marine Research Program (Project 2.2.4 to G.A.K), and supported by the Bardi Jawi Ranger program. Jurien Bay and Port Gregory sampling was supported by funding from the University of Western Australia, The Hermon Slade Foundation and the Australian Research Council awarded to T.W. An NHT-II Caring for our Country grant coordinated by WAMSI awarded to G.A.K supported sampling in Shark Bay. A University of Western Australia Postgraduate Student Research Grant awarded to D.H.vH funded laboratory analyses.

Compliance with ethical standards

Conflict of interest

Daniel H van Hees declares that he has no conflict of interest. Ylva S Olsen declares that she has no conflict of interest. Thomas Wernberg declares that he has no conflict of interest. Kathryn L Van Alstyne declares that she has no conflict of interest. Gary A Kendrick declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Author contributions

D.H.vH and G.A.K conceived of the ideas; D.H.vH collected the data; D.H.vH and K.V.A ran the laboratory analyses; D.H.vH, K.L.V.A, Y.O, T.W and G.A.K analysed the data; D.H.vH led the writing of the manuscript with contributions from G.A.K, K.L.V.A., T.W., and Y.S.O.

References

  1. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91.CrossRefGoogle Scholar
  2. Appel HM (1993) Phenolics in ecological interactions: the importance of oxidation. J Chem Ecol 19:1521–1552. doi: 10.1007/BF00984895 CrossRefGoogle Scholar
  3. Appel HM, Govenor HL, D’ascenzo M, Siska E, Schultz JC (2001) Limitations of Folin assays of foliar phenolics in ecological studies. J Chem Ecol 27:761–778. doi: 10.1023/A:1010306103643 CrossRefGoogle Scholar
  4. Bennett S, Wernberg T, Connell SD, Hobday AJ, Johnson CR, Ploczanska ES (2016) The “Great Southern Reef”: social, ecological and economic value of Australia’s neglected kelp forests. Mar Freshw Res 67:47–56. doi: 10.1071/MF15232 CrossRefGoogle Scholar
  5. Connan S, Goulard F, Stiger V, Deslandes E, Ar Gall E (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416. doi: 10.1515/BOT.2004.057 CrossRefGoogle Scholar
  6. Cronin G, Hay ME (1996) Induction of seaweed chemical defenses by amphipod grazing. Ecology 77:2287–2301CrossRefGoogle Scholar
  7. Estes JA, Steinberg PD (1988) Predation, herbivory and kelp evolution. Paleobiology 14:19–36CrossRefGoogle Scholar
  8. Fleury BG, Kelecom A, Pereira RC, Teixeira VL (1994). Polyphenols, terpenes and sterols in Brazilian Dictyotales and Fucales (Phaeophyta). Bot Mar 37(5):457–462CrossRefGoogle Scholar
  9. Gaines SD, Lubchenco J (1982) A unified approach to marine plant-herbivore interactions. II. Biogeography. Annu Rev Ecol Syst 13:111–138CrossRefGoogle Scholar
  10. Haavisto F (2016) Macroalgal defenses against herbivory: causes and consequences of intraspecific variation. University of Turku, TurkuGoogle Scholar
  11. Hay ME (1996) Marine chemical ecology: what’s known and what’s next? J Exp Mar Bio Ecol 200:103–134. doi: 10.1016/S0022-0981(96)02659-7 CrossRefGoogle Scholar
  12. Hay ME, Fenical W (1988) Marine plant-herbivore interactions: the ecology of chemical defense. Annu Rev Ecol Syst 19:111–145CrossRefGoogle Scholar
  13. Henry BE, Van Alstyne KL (2004) Effects of UV radiation on growth and phlorotannins in Fucus gardneri (Phaeophyceae) juveniles and embryos. J Phycol 40:527–533. doi: 10.1111/j.1529-8817.2004.03103.x CrossRefGoogle Scholar
  14. Huisman JM (2000) Marine plants of Australia. University of Western Australia Press, NedlandsGoogle Scholar
  15. Huisman JM (2015) Algae of Australia: Marine Benthic Algae of North-western Australia. CSIRO, MelbourneGoogle Scholar
  16. Huisman JM, Borowitzka MA (2003) Marine benthic flora of the Dampier Archipelago, Western Australia. Western Australia Museum, PerthGoogle Scholar
  17. Iken K, Amsler CD, Amsler MO, McClintock JB, Baker BJ (2009) Field studies on deterrent properties of phlorotannins in Antarctic brown algae. Bot Mar 52:547–557. doi: 10.1515/BOT.2009.071 CrossRefGoogle Scholar
  18. Jormalainen V, Honkanen T (2004) Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J Evol Biol 17:807–820. doi: 10.1111/j.1420-9101.2004.00715.x CrossRefGoogle Scholar
  19. Kendrick GA, Huisman JM, Walker DI (1990) Benthic Macroalgae of Shark Bay, Western Australia. Bot Mar 33:47–54. doi: 10.1515/botm.1990.33.1.47 CrossRefGoogle Scholar
  20. Kendrick GA, Goldberg NA, Harvey ES, McDonald J (2009) Historical and contemporary influence of the Leeuwin Current to the marine biota of the Southern Western Australian Continental Shelf and the Recherche Archipelago. J R Soc West Aust 92:211Google Scholar
  21. Le Lann K, Ferret C, Vanmee E, Spangol C, Lhuillery M, Payri C, Stiger-Pouvreau V (2012) Total phenolic, size-fractionated phenolics and fucoxanthin content of tropical Sargassaceae (Fucales, Phaeophyceae) from the South Pacific Ocean: spatial and specific variability. Phycol Res 60:37–50. doi: 10.1111/j.1440-1835.2011.00634.x CrossRefGoogle Scholar
  22. Lüder UH, Clayton MN (2004) Induction of phlorotannins in the brown macroalga Ecklonia radiata (Laminariales, Phaeophyta) in response to simulated herbivory: the first microscopic study. Planta 218:928–937. doi: 10.1007/s00425-003-1176-3 CrossRefGoogle Scholar
  23. Mannino AM, Vaglica V, Oddo E (2014) Seasonal variation in total phenolic content of Dictyopteris polypodioides (Dictyotaceae) and Cystoseira amentacea (Sargassaceae) from the Sicilian coast. Flora Mediterr 24:39–50. doi: 10.7320/FlMedit24.039 CrossRefGoogle Scholar
  24. McCarty AT, Sotka EE (2013) Geographic variation in feeding preference of a generalist herbivore: the importance of seaweed chemical defenses. Oecologia 172:1071–1083. doi: 10.1007/s00442-012-2559-6 CrossRefGoogle Scholar
  25. McGowran B, Li Q, Cann J, Padley D, McKirdy DM, Shafik S (1997) Biogeographic impact of the Leewin Current in Southern Australia since the late middle Eocene. Palaeogeogr Palaeoclimatol Palaeoecol 136:19–40CrossRefGoogle Scholar
  26. Nybakken JW Marine Biology (1993) An ecological approach. Harper Collins, New YorkGoogle Scholar
  27. Pavia H, ÅBerg P (1996) Spatial variation in polyphenolic content of Ascophyllum nodosum (Fucales, Phaeophyta). Hydrobiologia 326–327:199–203. doi: 10.1007/BF00047807 CrossRefGoogle Scholar
  28. Pavia H, Brock E (2000) Extrinsic factors influencing phlorotannin production in the brown alga Ascophyllum nodosum. Mar Ecol Prog Ser 193:285–294. doi: 10.3354/meps193285 CrossRefGoogle Scholar
  29. Pavia H, Toth GB (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology 81:3212–3225CrossRefGoogle Scholar
  30. Pavia H, Cervin G, Lindgren A, Åberg P (1997) Effects of UV-B radiation and simulated herbivory on phlorotannins in the brown alga Ascophylum nodosum. Mar Ecol Prog Ser 157:139–146CrossRefGoogle Scholar
  31. Peckol P, Krane JM, Yates JL (1996) Interactive effects of inducible defense and resource availability on phlorotannins in the North Atlantic brown alga Fucus vesiculosus. Mar Ecol Prog Ser 138:209–217CrossRefGoogle Scholar
  32. Pedersen A (1984) Studies on phenol content and heavy metal uptake in fucoids. Hydrobiologia 116–117:498–504. doi: 10.1007/BF00027732 CrossRefGoogle Scholar
  33. Plouguerné E, Cesconetto C, Cruz CP, Pereira RC, da Gama BAP (2012) Within-thallus variation in polyphenolic content and antifouling activity in Sargassum vulgare. J Appl Phycol 24:1629–1635. doi: 10.1007/s10811-012-9826-0 CrossRefGoogle Scholar
  34. Poore AGB, Campbell AH, Coleman RA, Edgar GJ, Jormalainen V, Reynolds PL, Sotka EE, Stachowicz JJ, Taylor RB, Vanderklift MA, Duffy JE (2012) Global patterns in the impact of marine herbivores on benthic primary producers. Ecol Lett 15:912–922. doi: 10.1111/j.1461-0248.2012.01804.x CrossRefGoogle Scholar
  35. R Core Team (2013) R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/
  36. Ragan MA, Glombitza KW (1986) Phlorotannins, brown algal polyphenols. Prog Phycol Res 4:129–241.Google Scholar
  37. Ragan MA, Jensen A (1978) Quantitative studies on brown algal phenols. II. Seasonal variation in polyphenol content of Ascophyllum nodosum (L.) Le Jol. and Fucus vesiculosus (L.). J Exp Mar Bio Ecol 34:245–258. doi: 10.1016/S0022-0981(78)80006-9 CrossRefGoogle Scholar
  38. Ridgway K (2009) CSIRO oceans & atmosphere—Hobart. CARS 2009-CSIRO Atlas of Regional SeasGoogle Scholar
  39. Schoenwaelder MEA, Clayton MN (1999) The presence of phenolic compounds in isolated cell walls of brown algae. Phycologia 38:161–166. doi: 10.2216/i0031-8884-38-3-161.1 CrossRefGoogle Scholar
  40. Steinberg PD (1986) Chemical defenses and susceptibility of tropical marine brown algae to herbivores. Oceologia 69:628–630CrossRefGoogle Scholar
  41. Steinberg PD (1989) Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oceologia 78:373–382CrossRefGoogle Scholar
  42. Steinberg PD (1994) Lack of short-term induction of phlorotannins in the Australasian brown algae Ecklonia radiata and Sargassum vestitum. Mar Ecol Prog Ser 112:129–133CrossRefGoogle Scholar
  43. Steinberg PD, Paul VJ (1990) Fish feeding and chemical defenses of tropical brown algae in Western Australia. Mar Ecol Prog Ser 58:253–259. doi: 10.3354/meps058253 CrossRefGoogle Scholar
  44. Steinberg PD, Edyvane K, De Nys R, Birdsy R, van Altena IA (1991) Lack of avoidance of phenolic-rich brown algae by tropical herbivorous fishes. Mar Biol 109:335–343CrossRefGoogle Scholar
  45. Steinberg PD, Estes JA, Winter FC. (1995) Evolutionary consequences of food chain length in kelp forest communities. Proc Nat Acad Sci 92(18):8145–8148CrossRefGoogle Scholar
  46. Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409. doi: 10.1515/BOT.2004.058 CrossRefGoogle Scholar
  47. Swanson AK, Druehl LD (2002) Induction, exudation and the UV protective role of kelp phlorotannins. Aquat Bot 73:241–253CrossRefGoogle Scholar
  48. Tala F, Velasquez M, Mansilla A, Macaya EC, Thiel M (2016) Latitudinal and seasonal effects on short-term acclimation of floating kelp species from the South-East Pacific. J Exp Mar Bio Ecol 483:31–41. doi: 10.1016/j.jembe.2016.06.003 CrossRefGoogle Scholar
  49. Tanniou A, Vandanjon L, Incera M, Serrano Leon E, Husa V, Le Grand J, Nicolas J-L, Poupart N, Kervarec N, Engelen A, Walsh R, Guerard F, Bourgougnon N, Stiger-Pouvreau V (2014) Assessment of the spatial variability of phenolic contents and associated bioactivities in the invasive alga Sargassum muticum sampled along its European range from Norway to Portugal. J Appl Phycol 26:1–16. doi: 10.1007/s10811-013-0198-x CrossRefGoogle Scholar
  50. Targett NM, Boettcher TE (1995) Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia 103:170–179CrossRefGoogle Scholar
  51. Targett NM, Coen LD, Boettcher AA, Tanner CE (1992) Biogeographic comparisons of marine algal polyphenolics: evidence against a latitudinal trend. Oecologia 89:464–470. doi: 10.1007/BF00317150 CrossRefGoogle Scholar
  52. Van Alstyne KL (1995) Comparison of three methods for quantifying brown algal polyphenolic compounds. J Chem Ecol 21:45–58. doi: 10.1007/BF02033661 CrossRefGoogle Scholar
  53. Van Alstyne KL, Paul VJ (1990) The biogeography of polyphenolic compounds in marine macroalgae: temperate brown algal defenses deter feeding by tropical herbivorous fishes. Oceologia 84:158–163. doi: 10.1007/S00442-004-V CrossRefGoogle Scholar
  54. Van Alstyne KL, McCarthy JJ, Hustead CL, Duggins DO (1999) Geographic variation in polyphenolic levels of northeastern Pacific kelps and rockweeds. Mar Biol 133:371–379. doi: 10.1007/s002270050476 CrossRefGoogle Scholar
  55. Van Altena IA, Steinberg PD (1992) Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure?. Biochem Syst Ecol 20:493–499. doi: 10.1016/0305-1978(92)90003-V CrossRefGoogle Scholar
  56. Vanderklift MA, Kendrick GA (2004) Variation in abundances of herbivorous invertebrates in temperate subtidal rocky reef habitats. Mar Freshw Res 55:93–103. doi: 10.1071/MF03057 CrossRefGoogle Scholar
  57. Vermeij GJ (1978) Biogeography and adaptation: patterns of marine life. Harvard University Press, CambridgeGoogle Scholar
  58. Walker DI (1985) Correlations between salinity and growth of the seagrass Amphibolis antarctica (Labill.) Sonder & Aschers., in Shark Bay, Western Australia, using a new method for measuring production rate. Aquat Bot 23:13–26CrossRefGoogle Scholar
  59. Wernberg T, Russell BD, Moore PJ, Ling SD, Smale DA, Campbell A, Coleman MA, Steinberg PD, Kendrick GA, Connell SD (2011) Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. J Exp Mar Bio Ecol 400:7–16. doi: 10.1016/j.jembe.2011.02.021 CrossRefGoogle Scholar
  60. Wernberg T, Smale D, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2012) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim Change 5:1–5. doi: 10.1038/nclimate1627 Google Scholar
  61. Wernberg T, Thomsen MS, Connell SD, Russell BD, Waters JM, Zuccarello GC, Kraft GT, Sanderson C, West JA, Gurgel CFD (2013) The footprint of continental-scale ocean currents on the biogeography of seaweeds. PLoS ONE 8:1–8. doi: 10.1371/journal.pone.0080168 CrossRefGoogle Scholar
  62. Womersley HBS (1987) The marine benthic flora of Southern Australia, Part II. South Australian Government Printing Division, AdelaideGoogle Scholar
  63. Zubia M, Robledo D, Freile-Pelegrin Y (2007) Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. J Appl Phycol 19:449–458. doi: 10.1007/s10811-006-9152-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Daniel H. van Hees
    • 1
    • 2
    Email author
  • Ylva S. Olsen
    • 1
    • 2
  • Thomas Wernberg
    • 1
    • 2
  • Kathryn L. Van Alstyne
    • 3
  • Gary A. Kendrick
    • 1
    • 2
  1. 1.School of Biological SciencesUniversity of Western AustraliaCrawleyAustralia
  2. 2.The Oceans InstituteUniversity of Western AustraliaCrawleyAustralia
  3. 3.Shannon Point Marine LaboratoryWestern Washington UniversityAnacortesUSA

Personalised recommendations