Marine Biology

, 164:77 | Cite as

A new algorithm for the identification of dives reveals the foraging ecology of a shallow-diving seabird using accelerometer data

  • M. Cianchetti-BenedettiEmail author
  • C. Catoni
  • A. Kato
  • B. Massa
  • P. Quillfeldt
Original paper


The identification of feeding events is crucial to our understanding of the foraging ecology of seabirds. Technology has made small devices, such as time-depth recorders (TDRs) and accelerometers available. However, TDRs might not be sensitive enough to identify shallow dives, whereas accelerometers might reveal more subtle behaviours at a smaller temporal scale. Due to the limitations of TDRs, the foraging ecology of many shallow-diving seabirds has been poorly investigated to date. We thus developed an algorithm to identify dive events in a shallow-diving seabird species, the Scopoli’s shearwater, using only accelerometer data. The accuracy in the identification of dives using either accelerometers or TDRs was compared. Furthermore, we tested if the foraging behaviour of shearwaters changed during different phases of reproduction and with foraging trip type. Data were collected in Linosa Island (35°51′33″N; 12°51′34″E) from 12 June to 8 September 2015 by deploying accelerometer data loggers on 60 Scopoli’s shearwaters. Four birds were also equipped with TDRs. TDRs recorded only 17.7% of the dives detected by the accelerometers using the algorithm. A total of 82.3% of dives identified by algorithm were too short or shallow to be detected by TDRs. Therefore, TDRs were not accurate enough to detect most of the dives in Scopoli’s shearwaters, which foraged mostly close to the sea surface. Our data showed that birds performed shorter foraging trips and dived more frequently in the early chick-rearing period compared with the late chick-rearing and incubation phases. Furthermore, parents dived more frequently during short foraging trips. Our results suggest that Scopoli’s shearwaters maximised their foraging effort (e.g. number of dives, short trips) during shorter foraging trips and during early chick-rearing.


Accelerometer Data Dive Duration Short Trip Seabird Species Trip Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We wish to thank all people who participated in the fieldwork: Lucie Michel, Paolo Becciu, Enrica Martorelli, Katrin Quiring, Wiebke Schaefer, and Giulia Bambini. Thanks to Giacomo Dell’Omo for field work logistic. The project was supported by Ornis italica, Deutsche Forschungsgemeinschaft (PQ 148/8 and PQ 148/17), and the LIFE11 + NAT/IT/000093 ‘Pelagic Birds’.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Consent was obtained from all participants of the study. All animals were sampled and/or treated according to the national legislation. The study was conducted under a permit issued by the Regione Siciliana and Assessorato Risorse Agricole e Alimentari.

Supplementary material

227_2017_3106_MOESM1_ESM.pdf (459 kb)
Supplementary material 1 (PDF 459 KB)
227_2017_3106_MOESM2_ESM.pdf (294 kb)
Supplementary material 2 (PDF 294 KB)


  1. Arcos JM, Oro D (2002) Significance of fisheries discards for a threatened Mediterranean seabird, the Balearic shearwater Puffinus mauretanicus. Mar Ecol Prog Ser 239:209–220. doi: 10.3354/meps239209 CrossRefGoogle Scholar
  2. Ashmole NP (1971) Seabird ecology and the marine environment. In: Farner DS, King JR (eds) Avian biology. Academic Press, New York, pp 223–286Google Scholar
  3. Baduini CL, Hyrenbach KD (2003) Biogeography of procellariiform foraging strategies: does ocean productivity influence provisioning? Mar Ornithol 31:101–112Google Scholar
  4. Berlincourt M, Angel LP, Arnould JPY (2015) Combined use of GPS and accelerometry reveals fine scale three-dimensional foraging behaviour in the short-tailed shearwater. PLoS One 10:1–16. doi: 10.1371/journal.pone.0139351 CrossRefGoogle Scholar
  5. Bolton M (1996) Energy expenditure, body weight and foraging performance of Storm Petrels Hydrobates pelagicus breeding in artificial nesting chambers. Ibis 138(3):405–409CrossRefGoogle Scholar
  6. Cecere JG, Catoni C, Maggini I, Imperio S, Gaibani G (2013) Movement patterns and habitat use during incubation and chick-rearing of Cory’s shearwaters (Calonectris diomedea diomedea) (Aves: Vertebrata) from Central Mediterranean: influence of seascape and breeding stage. Ital J Zool 80:82–89. doi: 10.1080/11250003.2012.710654 CrossRefGoogle Scholar
  7. Cecere JG, Gaibani G, Imperio S (2014) Effects of environmental variability and offspring growth on the movement ecology of breeding scopoli’s shearwater Calonectris diomedea. Curr Zool 60:622–630. doi: 10.1093/czoolo/60.5.622 CrossRefGoogle Scholar
  8. Chimienti M, Cornulier T, Owen E, Bolton M, Davies IM, Travis JM, Scott BE (2016) The use of an unsupervised learning approach for characterizing latent behaviors in accelerometer data. Ecol Evol 6(3):727–741. doi: 10.1002/ece3.1914 CrossRefGoogle Scholar
  9. Congdon BC, Krockenberger AK, Smithers BV (2005) Dual-foraging and coordinated provisioning in a tropical Procellariiform, the wedge-tailed shearwater. Mar Ecol Prog Ser 301:293–301. doi: 10.3354/meps301293 CrossRefGoogle Scholar
  10. Dias MP, Granadeiro JP, Catry P (2012) Working the day or the night shift? Foraging schedules of Cory’s shearwaters vary according to marine habitat. Mar Ecol Prog Ser 467:245–252. doi: 10.3354/meps09966 CrossRefGoogle Scholar
  11. Gleiss AC, Wilson RP, Shepard ELC (2011) Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol Evol 2:23–33. doi: 10.1111/j.2041210X.2010.00057.x CrossRefGoogle Scholar
  12. Gómez Laich A, Wilson RP, Gleiss AC, Shepard EL, Quintana F (2011) Use of overall dynamic body acceleration for estimating energy expenditure in cormorants. J Exp Mar Bio Ecol 399:151–155. doi: 10.1016/j.jembe.2011.01.008 CrossRefGoogle Scholar
  13. Granadeiro J, Nunes M, Silva M, Furness R (1998) Flexible foraging strategy of Cory’s shearwater, Calonectris diomedea, during the chick-rearing period. Anim Behav 56:1169–1176. doi: 10.1006/anbe.1998.0827 CrossRefGoogle Scholar
  14. Grémillet D, Dell’Omo G, Ryan PG, Peters G, Ropert-Coudert Y, Weeks SJ (2004) Offshore diplomacy, or how seabirds mitigate intra-specific competition: A case study based on GPS tracking of Cape gannets from neighbouring colonies. Mar Ecol Prog Ser 268:265–279. doi: 10.3354/meps268265 CrossRefGoogle Scholar
  15. Grémillet D, Pichegru L, Kuntz G, Woakes AG, Wilkinson S, Crawford RJM, Ryan PG (2008) A junk-food hypothesis for gannets feeding on fishery waste. Proc R Soc Lond Biol 275:1149–1156. doi: 10.1098/rspb.2007.1763 CrossRefGoogle Scholar
  16. Grémillet D, Péron C, Pons J-B, Ouni R, Authier M, Thévenet M, Fort J (2014) Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar Biol 161:2669–2680. doi: 10.1007/s00227-0142538-z CrossRefGoogle Scholar
  17. Guilford TC, Meade J, Freeman R, Biro D, Evans T, Bonadonna F, Boyle D, Roberts S, Perrins CM (2008) GPS tracking of the foraging movements of Manx shearwaters Puffinus puffinus breeding on Skomer Island, Wales. Ibis 150:462–473. doi: 10.1111/j.1474-919x.2008.00805.x CrossRefGoogle Scholar
  18. Hertel F, Ballance L (1999) Wing ecomorphology of seabirds from Johnston Atoll. Condor 101:549–556Google Scholar
  19. Jonsen ID, Flemmings JM, Myers RA (2005) Robust state–space modeling of animal movement data. Ecology 86:2874–2880. doi: 10.1890/04-1852 CrossRefGoogle Scholar
  20. Kelleher K (2005) Discards in the world’s marine fisheries: an update. FAO Fish Tech Pap 470:131Google Scholar
  21. Lo Valvo M (2001) Sexing dult Cory’s shearwater by discriminant analysis of body measurements on Linosa Island (Sicilian Channel), Italy. Waterbirds 24:169–174.CrossRefGoogle Scholar
  22. Magalhães M, Santos R, Hamer K (2008) Dual-foraging of Cory’s shearwaters in the Azores: feeding locations, behaviour at sea and implications for food provisioning of chicks. Mar Ecol Prog Ser 359:283–293. doi: 10.3354/meps07340 CrossRefGoogle Scholar
  23. Massa B, Lo Valvo M (1986) Biometrical and biological considerations on the Cory’s shearwater Calonectris diomedea. In: Mediterranean Marine Avifauna. Springer, Berlin, pp 293–313Google Scholar
  24. McNeil R, Drapeau P, Pierotti R (1993) Nocturnality in colonial waterbirds: occurrence, special adaptations, and suspected benefits. In: Power DM (ed) Current ornithology, vol 10. Plenum Press, New York, pp 187–246CrossRefGoogle Scholar
  25. Meier RE, Wynn RB, Votier SC, Grive MM, Rodriguez A, Maurice L, Van Loon EE, Jones AR, Suberg L, Arcos JM, Morgan G, Josey SA, Guilford T (2015) Consistent foraging areas and commuting corridors of the critically endangered Balearic shearwater Puffinus mauretanicus in the northwestern Mediterranean. Biol Conserv 190:87–97CrossRefGoogle Scholar
  26. Navarro J, González-solís J, Viscor G (2007) Nutritional and feeding ecology in Cory’s shearwater Calonectris diomedea during breeding. Mar Ecol Prog Ser 351:261–271. doi: 10.3354/meps07115 Google Scholar
  27. Navarro J, Kaliontzopoulou A, Gonzàlez-Solìs J (2009) Sexual dimorphism in bill morphology and feeding ecology in Cory’s shearwater (Calonectris diomedea). Zoology 112:128–138. doi: 10.1016/j.zool.2008.05.001
  28. Ochi D, Oka N, Watanuki Y (2010) Foraging trip decisions by the streaked shearwater Calonectris leucomelas depend on both parental and chick state. J Ethol 313–321. doi: 10.1007/s10164-009-01873 Google Scholar
  29. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010a) Foraging plasticity in a pelagic seabird species along a marine productivity gradient. Mar Ecol Prog Ser 398:259–274. doi: 10.3354/meps08319 CrossRefGoogle Scholar
  30. Paiva VH, Geraldes P, Ramírez I, Meirinho A, Garthe S, Ramos JA (2010b) Oceanographic characteristics of areas used by Cory’s shearwaters during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399. doi: 10.1007/s00227-010-1417-5 CrossRefGoogle Scholar
  31. Phalan B, Phillips RA, Silk JRD et al (2007) Foraging behaviour of four albatross species by night and day. Mar Ecol Prog Ser 340:271–286. doi: 10.3354/meps340271 CrossRefGoogle Scholar
  32. Pinaud D, Weimerskirch H (2005) Scale-dependent habitat use in a long-ranging central place predator. J Anim Ecol 74:852–863. doi: 10.1111/j.1365-2656.2005.00984.x CrossRefGoogle Scholar
  33. Quillfeldt P, Masello JF, Hamer KC (2004) Sex differences in provisioning rules and honest signalling of need in Manx shearwaters, Puffinus puffinus. Anim Behav 68:613–620. doi: 10.1016/j.anbehav.2003.12.002 CrossRefGoogle Scholar
  34. R Core Team (2015) R: a language and environment for statistical computing. Version 3.2.1. R Foundation for Statistical Computing, Vienna.
  35. Ramos JA, Moniz Z, Solá E, Monteiro LR (2003) Reproductive measures and chick provisioning of Cory’s shearwater Calonectris diomedea borealis in the Azores. Bird Study 50:47–54. doi: 10.1080/00063650309461289 CrossRefGoogle Scholar
  36. Ramos JA, Granadeiro JP, Phillips RA, Catry P (2009) Flight morphology and foraging behavior of male and female Cory’s shearwaters. Condor 111:424–432. doi: 10.1525/cond.2009.090008 CrossRefGoogle Scholar
  37. Rollinson DP, Dilley BJ, Ryan PG (2014) Diving behaviour of white-chinned petrels and its relevance for mitigating longline bycatch. Polar Biol 37(9):1301–1308. doi: 10.1007/s00300-014-1521-y CrossRefGoogle Scholar
  38. Ronconi RA, Ryan PG, Ropert-Coudert Y (2010) Diving of great shearwaters (Puffinus gravis) in cold and warm water regions of the South Atlantic Ocean. PLoS One 5(11):e15508. doi: 10.1371/journal.pone.0015508 CrossRefGoogle Scholar
  39. Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar Biol 149:139–148. doi: 10.1007/s00227-005-0188-x CrossRefGoogle Scholar
  40. Rubolini D, Maggini I, Ambrosini R et al (2015) The effect of moonlight on Scopoli’s shearwater Calonectris diomedea colony attendance patterns and nocturnal foraging: a test of the foraging efficiency hypothesis. Ethology 121(3):284–299. doi: 10.1111/eth.12338 CrossRefGoogle Scholar
  41. Sakamoto KQ, Sato K, Ishizuka M, Watanuki Y, Takahashi A, Daunt F, Wanless S (2009) Can ethograms be automatically generated using body acceleration data from free-ranging birds? PLoS One 4:e5379. doi: 10.1371/journal.pone.0005379 CrossRefGoogle Scholar
  42. Sangster G, Collinson JM, Crochet PA, Knox AG, Parkin DT, Votier SC (2012) Taxonomic recommendations for British birds: eighth report. Ibis 154:874–883. doi: 10.1111/j.1474-919X.2012.01273.x CrossRefGoogle Scholar
  43. Shaffer SA, Costa DP, Weimerskirch H (2003) Foraging effort in relation to the constraints of reproduction in free-ranging albatrosses. Funct Ecol 17:66–74. doi: 10.1046/j.1365-2435.2003.00705.x
  44. Shaffer A, Weimerskirch H, Scott D, et al. (2009) Spatio temporal habitat use by breeding Sooty shearwaters Puffinus griseus. Mar Ecol Prog Ser 391:209–220. doi: 10.3354/meps07932 CrossRefGoogle Scholar
  45. Shepard E, Wilson R, Halsey L, et al. (2008) Derivation of body motion via appropriate smoothing of acceleration data. Aquat Biol 4:235–241. doi: 10.3354/ab00104 CrossRefGoogle Scholar
  46. Signorell A (2015) DescTools: tools for descriptive statistics. R package version 0.99, p 15Google Scholar
  47. Spear LB, Ainley DG, Walker WA (2007) Foraging dynamics of seabirds in the Eastern Tropical Pacific Ocean. Studies in Avian Biology Series 35: Cooper Ornithological Society, NormanGoogle Scholar
  48. Stahl JC, Sagar PM (2000) Foraging strategies and migration of southern Buller’s albatrosses Diomedea b. bulled breeding on the Solander Is, New Zealand. J R Soc New Zeal 30:319–334. doi: 10.1080/03014223.2000.9517625 CrossRefGoogle Scholar
  49. Terauds A, Gales R (2006) Provisioning strategies and growth patterns of light-mantled sooty albatrosses Phoebetria palpebrata on Macquarie Island. Polar Biol 29:917–926. doi: 10.1007/s00300-006-0133-6 CrossRefGoogle Scholar
  50. Tremblay Y, Roberts AJ, Costa DP (2007) Fractal landscape method: an alternative approach to measuring area-restricted searching behavior. J Exp Biol 210:935–945. doi: 10.1242/jeb.02710 CrossRefGoogle Scholar
  51. Weimerskirch H (1998) How can a pelagic seabird provision its chick when relying on a distant food resource? Cyclic attendance at the colony, foraging decision and body condition in sooty shearwaters. J Anim Ecol 67:99–109. doi: 10.1046/j.1365-2656.1998.00180.x CrossRefGoogle Scholar
  52. Weimerskirch H, Chastel O, Ackermann L, Chaurand T, Cuenot-Chaillet F, Hindermeyer X, Judas J (1994) Alternate long and short foraging trips in pelagic seabird parents. Anim Behav 472–476Google Scholar
  53. Wilson RP, Wilson M-PTJ (1989) Tape: a package attachment technique for penguins. Wildl Soc Bull 17:77–79.Google Scholar
  54. Ydenberg R, Welham C, Schmid-Hempel R (1994) Time and energy constraints and the relationships between currencies in foraging theory. Behav Ecol 5(1):28–34CrossRefGoogle Scholar
  55. Zavalaga CB, Halls JN, Mori GP, Taylor SA, Dell’Omo G (2010) At-sea movement patterns and diving behavior of Peruvian boobies Sula variegata in northern Perù. Mar Ecol Prog Ser 404:259–274. doi: 10.3354/meps08490 CrossRefGoogle Scholar
  56. Zotier R, Bretagnolle V, Thibault J-C (1999) Biogeography of the marine birds of a confined sea, the Mediterranean. J Biogeogr 26:297–313CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Animal Ecology and SystematicsJustus Liebig University GiessenGiessenGermany
  2. 2.Ornis italicaRomeItaly
  3. 3.Centre d’Etudes Biologiques de ChizéUMR 7372 du CNRS-Université de La RochelleVilliers-en-BoisFrance
  4. 4.Department of Agriculture and Forest ScienceUniversity of PalermoPalermoItaly

Personalised recommendations