Marine Biology

, 164:71 | Cite as

New tool to elucidate the diet of the ormer Haliotis tuberculata (L.): Digital shell color analysis

  • V. MarchaisEmail author
  • A. Jolivet
  • S. Hervé
  • S. Roussel
  • B. R. Schöne
  • J. Grall
  • L. Chauvaud
  • J. Clavier
Original paper


Food sources of the European abalone Haliotis tuberculata throughout its life cycle are still to be clarified in nature. A novel non-destructive method of digital shell color analysis to reveal the diets of European abalone (ormer) was developed in this study. The method was calibrated using ormers reared under experimental conditions in North Western Brittany in 2012 and fed a controlled monospecific diet to define the shell hues associated with various macroalgae (i.e., Rhodophyta, Chlorophyta, and Phaeophyta). General food preferences were established by comparing the shell hue of wild adult ormers and experimental adult ormers. Shell hue corresponds to the color tint in the HSL color space measured on digital pictures of the shell. Experimentally, shell hue values differed according to treatment, with the most yellow-green hue (72°) for ormers fed Saccharina sp. and the coral hue (25°) for ormers fed Palmaria palmata. High variation in shell color of wild ormers was observed according to the sampling site and/or ontogeny. The diet of wild ormers may be related to the abundance of different drifting algae in their respective habitats. Thus, this non-destructive and easy-to-use technique appears to be a promising tool for determining the diet of Haliotis species and, perhaps, other herbivorous mollusks.


Numerical color Shell hue HSL color space Abalone Food sources Experiment 



We thank the team at the France Haliotis hatchery and their interns for the care of the animals and assistance during the experiment. Many thanks to all of the people who contributed to sampling macroalgae on foreshore. The authors also thank the scuba divers for sampling wild abalones, and Sylvain Huchette for contributing to this experiment and his feedback. We would like to thank the three anonymous reviewers for their helpful comments.

Compliance with ethical standards

The project was supported by the National Research Agency, French Government, with regard to investment expenditure program PIA-ANR IDEALG BTBR-10-04 and the CHIVAS (ANR-Blanc) program. V. Marchais was supported by a doctoral grant from the Université de Bretagne Occidentale. All applicable international and national guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

Authors declare that they have no conflict of interest.

Supplementary material

227_2017_3103_MOESM1_ESM.pdf (173 kb)
Supplementary material 1 (PDF 173 KB)
227_2017_3103_MOESM2_ESM.pdf (7.8 mb)
Supplementary material 2 (PDF 7950 KB)
227_2017_3103_MOESM3_ESM.pdf (1.1 mb)
Supplementary material 3 (PDF 1156 KB)


  1. Baldwin J, Elias JP, Wells RMG, Donovan DA (2007) Energy metabolism in the tropical abalone, Haliotis asinina Linné: comparisons with temperate abalone species. J Exp Mar Biol Ecol 342:213–225. doi: 10.1016/j.jembe.2006.09.005 CrossRefGoogle Scholar
  2. Barnard W, De Waal D (2006) Raman investigation of pigmentary molecules in the molluscan biogenic matrix. J Raman Spectrosc 37:342–352. doi: 10.1002/jrs.1461 CrossRefGoogle Scholar
  3. Bianchi TS, Kautsky L, Argyrou M (1997) Dominant chlorophylls and carotenoids in macroalgae of the Baltic Sea (Baltic proper): their use as potential biomarkers. Sarsia 82:55–62CrossRefGoogle Scholar
  4. Budd A, McDougall C, Green K, Degnan BM (2014) Control of shell pigmentation by secretory tubules in the abalone mantle. Front Zool 11:62. doi: 10.1186/s12983-014-0062-0 CrossRefGoogle Scholar
  5. Caron L, Douady D, De Martino A, Quinet M (2001) Light harvesting in brown algae. Cah Biol 42:109–124Google Scholar
  6. Caut S, Angulo E, Courchamp F (2009) Variation in discrimination factors (δ15N and δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol 46:443–453. doi: 10.1111/j.1365-2664.2009.01620.x CrossRefGoogle Scholar
  7. Chauvaud L, Lorrain A, Dunbar RB, et al (2005) Shell of the Great Scallop Pecten maximus as a high-frequency archive of paleoenvironmental changes. Geochem Geophys Geosystems 6:1–15. doi: 10.1029/2004GC000890 CrossRefGoogle Scholar
  8. Chauvaud L, Thébault J, Clavier J, et al (2011) What’s hiding behind ontogenetic δ13C variations in mollusk shells? New insights from the Great Scallop (Pecten maximus). Estuaries Coasts 34:211–220. doi: 10.1007/s12237-010-9267-4 CrossRefGoogle Scholar
  9. Cheng H-D, Jiang XH, Sun Y, Wang J (2001) Color image segmentation: advances and prospects. Pattern Recognit 34:2259–2281. doi: 10.1016/S0031-3203(00)00149-7 CrossRefGoogle Scholar
  10. Clavier J, Richard O (1982) Etude expérimentale du déplacement de l’ormeau (Haliotis tuberculata) dans le milieu naturel. Rev Trav Inst Pêch Marit 46:315–326.Google Scholar
  11. Clavier J, Richard O (1986) Growth of juvenile Haliotis tuberculata (Mollusca: Gastropoda) in their natural environment. J Mar Biol Assoc UK 66:497–503CrossRefGoogle Scholar
  12. Comfort A (1951) The pigmentation of molluscan shells. Biol Rev 26:285–301CrossRefGoogle Scholar
  13. Day RW, Cook P (1995) Bias towards brown algae in determining diet and food preferences: the South African abalone Haliotis midae. Mar Freshw Res 46:623–627. doi: 10.1071/MF9950623 CrossRefGoogle Scholar
  14. de Oliveira LN, de Oliveira VE, D’ávila S et al (2013) Raman spectroscopy as a tool for polyunsaturated compound characterization in gastropod and limnic terrestrial shell specimens. Spectrochim Acta A Mol Biomol Spectrosc 114:541–546. doi: 10.1016/j.saa.2013.05.095 CrossRefGoogle Scholar
  15. Dethier MN, Sosik E, Galloway AW et al (2013) Addressing assumptions: variation in stable isotopes and fatty acids of marine macrophytes can confound conclusions of food web studies. Mar Ecol Prog Ser 478:1–14. doi: 10.3354/meps10310 CrossRefGoogle Scholar
  16. Emmery A, Lefebvre S, Alunno-Bruscia M, Kooijman S (2011) Understanding the dynamics of δ13C and δ15N in soft tissues of the bivalve Crassostrea gigas facing environmental fluctuations in the context of Dynamic Energy Budgets (DEB). J Sea Res 66:361–371. doi: 10.1016/j.seares.2011.08.002 CrossRefGoogle Scholar
  17. Fox DL (1966) Pigmentation of molluscs. In: Wilbur KM, Yonge CM (eds) Physiology of mollusca. Academic press, New York, pp 249–274CrossRefGoogle Scholar
  18. Gallardo WG, Bautista-Teruel MN, Fermin AC, Marte CL (2003) Shell marking by artificial feeding of the tropical abalone Haliotis asinina Linne juveniles for sea ranching and stock enhancement. Aquac Res 34:839–842. doi: 10.1046/j.1365-2109.2003.00890.x CrossRefGoogle Scholar
  19. Ge J, Li Q, Yu H, Kong L (2015) Mendelian inheritance of golden shell color in the Pacific oyster Crassostrea gigas. Aquaculture 441:21–24. doi: 10.1016/j.aquaculture.2015.01.031 CrossRefGoogle Scholar
  20. Gonzalez RC, Woods RE (2008) Color image processing. In: Gonzalez RC, Woods RE (eds) Digital image processing, 3rd edn. Pearson Prentice Hall, New Jersey, pp 394–460Google Scholar
  21. Grossman EL, Ku TL (1986) Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem Geol Isot Geosci Sect 59:59–74.CrossRefGoogle Scholar
  22. Guest MA, Nichols PD, Frusher SD, Hirst AJ (2008) Evidence of abalone (Haliotis rubra) diet from combined fatty acid and stable isotope analyses. Mar Biol 153:579–588. doi: 10.1007/s00227-007-0831-9 CrossRefGoogle Scholar
  23. Hancz C, Magyary I, Molnar T et al (2003) Evaluation of color intensity enhanced by paprika as feed additive in goldfish and koi carp using computer-assisted image analysis. Fish Sci 69:1158–1161.CrossRefGoogle Scholar
  24. Hedegaard C, Bardeau J-F, Chateigner D (2006) Molluscan shell pigments: an in situ resonance Raman study. J Molluscan Stud 72:157–162. doi: 10.1093/mollus/eyi062 CrossRefGoogle Scholar
  25. Hoang TH, Qin JG, Stone DA et al (2016) Colour changes of greenlip abalone (Haliotis laevigata Donovan) fed fresh macroalgae and dried algal supplement. Aquaculture 456:16–23. doi: 10.1016/j.aquaculture.2016.01.022 CrossRefGoogle Scholar
  26. Jackson DJ, McDougall C, Green K et al (2006) A rapidly evolving secretome builds and patterns a sea shell. BMC Biol 4:40. doi: 10.1186/1741-7007-4-40 CrossRefGoogle Scholar
  27. Jeffrey SW, Mantoura RFC, Wright SW (1997) Phytoplankton pigments in oceanography: guidelines to modern methods. UNESCO, ParisGoogle Scholar
  28. Jolivet A, Chauvaud L, Huchette S et al (2015) The ormer (Haliotis tuberculata): A new, promising paleoclimatic tool. Palaeogeogr Palaeoclimatol Palaeoecol 427:32–40. doi: 10.1016/j.palaeo.2015.03.032 CrossRefGoogle Scholar
  29. Karcher DE, Richardson MD (2003) Quantifying turfgrass color using digital image analysis. Crop Sci 43:943–951CrossRefGoogle Scholar
  30. Kawamura T, Takami H (1995) Analysis of feeding and growth rate of newly metamorphosed abalone Haliotis discus hannai fed on four species of benthic diatom. Fish Sci 61:357–358.Google Scholar
  31. Kawamura T, Roberts RD, Takami H (1998) A review of the feeding and growth of postlarval abalone. J Shellfish Res 17:615–625Google Scholar
  32. Koike Y (1978) Biological and ecological studies on the propagation of the ormer, Haliotis tuberculata Linnaeus. I. Larval development and growth of juveniles. La mer 16:124–136Google Scholar
  33. Leighton DL (1961) Observations of the effect of diet on shell coloration in the red abalone, Haliotis rufescens Swainson. Veliger 4:29–32.Google Scholar
  34. Leighton D, Boolootian RA (1963) Diet and growth in the black abalone, Haliotis cracerodii. Ecology 44:228–238CrossRefGoogle Scholar
  35. Lindberg DR, Pearse JS (1990) Experimental manipulation of shell color and morphology of the limpets Lottia asmi (Middendorff) and Lottia digitalis (Rathke)(Mollusca: Patellogastropoda). J Exp Mar Biol Ecol 140:173–185CrossRefGoogle Scholar
  36. Liu X, Wu F, Zhao H et al (2009) A novel shell color variant of the Pacific abalone Haliotis discus hannai Ino subject to genetic control and dietary influence. J Shellfish Res 28:419–424. doi: 10.2983/035.028.0226 CrossRefGoogle Scholar
  37. Mai K, Mercer JP, Donlon J (1996) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata L. and Haliotis discus hannai Ino. V. The role of polyunsaturated fatty acids of macroalgae in abalone nutrition. Aquaculture 139:77–89. doi: 10.1016/0044-8486(95)01158-7 CrossRefGoogle Scholar
  38. Manríquez PH, Lagos NA, Jara ME, Castilla JC (2009) Adaptive shell color plasticity during the early ontogeny of an intertidal keystone snail. Proc Natl Acad Sci 106:16298–16303. doi: 10.1073/pnas.0908655106 CrossRefGoogle Scholar
  39. Maoka T (2011) Carotenoids in marine animals. Mar Drugs 9:278–293. doi: 10.3390/md9020278 CrossRefGoogle Scholar
  40. Marchais V, Richard J, Jolivet A et al (2015) Coupling experimental and field-based approaches to decipher carbon sources in the shell of the great scallop, Pecten maximus (L.). Geochim Cosmochim Acta 168:58–69. doi: 10.1016/j.gca.2015.07.010 CrossRefGoogle Scholar
  41. Matile P, Hörtensteiner S, Thomas H (1999) Chlorophyll degradation. Annu Rev Plant Biol 50:67–95. doi: 10.1146/annurev.arplant.50.1.67 CrossRefGoogle Scholar
  42. McShane PE, Gorfine H, Knuckey I (1994) Factors influencing food selection in the abalone Haliotis rubra (Mollusca: Gastropoda). J Exp Mar Biol Ecol 176:27–37CrossRefGoogle Scholar
  43. Mercer JP, Mai K-S, Donlon J (1993) Comparative studies on the nutrition of two species of abalone, Haliotis tuberculata Linnaeus and Haliotis discus hannai Ino I. Effects of algal diets on growth and biochemical composition. Invertebr Reprod Dev 23:75–88. doi: 10.1080/07924259.1993.9672298 CrossRefGoogle Scholar
  44. Mgaya YD (1995) Synopsis of biological data on the European abalone (ormer), Haliotis tuberculata Linnaeus, 1758 (Gastropoda: Haliotidae). Food and agriculture organisation of the United Nations, RomeGoogle Scholar
  45. Moss B (1968) Studies on the degradation of chlorophyll a and carotenoids in freshwaters. New Phytol 67:49–59. doi: 10.1111/j.1469-8137.1968.tb05453.x CrossRefGoogle Scholar
  46. Nakamura K, Archdale MV (2001) Activity patterns of abalone under experimental conditions. Aquac Res 32:169–179. doi: 10.1046/j.1365-2109.2001.00537.x CrossRefGoogle Scholar
  47. Nash CE (1991) The production of abalone. In: Nash CE (ed) Production of aquatic animals: crustaceans, molluscs, amphibians and reptiles. Elsevier, Amsterdam, pp 173–181Google Scholar
  48. Neitz J, Jacobs GH (1986) Polymorphism of the long-wavelength cone in normal human colour vision. Nature 323:623–625. doi: 10.1038/323623a0 CrossRefGoogle Scholar
  49. Olsen DA (1968a) Banding patterns in Haliotis rufescens. II. Some behavioral considerations and the effect of diet on shell coloration for Haliotis rufescens, Haliotis corrugata, Haliotis sorenseni, and Haliotis assimilis. Veliger 11:135–139.Google Scholar
  50. Olsen DA (1968b) Banding patterns of Haliotis rufescens as indicators of botanical and animal succession. Biol Bull 11:139–147CrossRefGoogle Scholar
  51. Onitsuka T, Kawamura T, Ohashi S et al (2004) Morphological changes in the radula of abalone Haliotis diversicolor aquatilis from post-larva to adult. J Shellfish Res 23:1079–1086Google Scholar
  52. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  53. Raven JA, Johnston AM, Kübler JE et al (2002) Mechanistic interpretation of carbon isotope discrimination by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378. doi: 10.1071/PP01201 CrossRefGoogle Scholar
  54. Roussel S, Huchette S, Clavier J, Chauvaud L (2011) Growth of the European abalone (Haliotis tuberculata L.) in situ: seasonality and ageing using stable oxygen isotopes. J Sea Res 65:213–218. doi: 10.1016/j.seares.2010.10.001 CrossRefGoogle Scholar
  55. Roussel V, Charreyron J, Labarre S et al (2013) First steps on technological and genetic improvement of European abalone (Haliotis tuberculata) based on investigations in full-sib families. Open J Genet 3:224–233. doi: 10.4236/ojgen.2013.33025 CrossRefGoogle Scholar
  56. Shepherd SA (1973) Studies on southern Australian abalone (genus Haliotis). I. Ecology of five sympatric species. Mar Freshw Res 24:217–258. doi: 10.1071/MF9730217 CrossRefGoogle Scholar
  57. Shepherd SA, Steinberg PD (1992) Food preferences of three Australian abalone species with a review of the algal food of abalone. In: Shepherd SA, Tegner MJ, Guzmand del Proo SA (eds) Abalone of the world: biology, fisheries and culture. Blackwell Scientific Publications, Oxford, pp 169–181Google Scholar
  58. Shepherd SA, Turner JA (1985) Studies on southern Australian abalone (genus Haliotis). VI. Habitat preference, abundance and predators of juveniles. J Exp Mar Biol Ecol 93:285–298. doi: 10.1016/0022-0981(85)90245-X CrossRefGoogle Scholar
  59. Stemmer K, Nehrke G (2014) The distribution of polyenes in the shell of Arctica islandica from North Atlantic localities: a confocal Raman microscopy study. J Molluscan Stud 80:365–370. doi: 10.1093/mollus/eyu033 CrossRefGoogle Scholar
  60. Stott A, Takeuchi T, Koike Y, et al (2002) Using micro particle diets to replace diatoms for feeding postlarval abalone Haliotis discus discus (Reeve.). Fish Sci 68:1088–1093. doi: 10.1046/j.1444-2906.2002.00536.x CrossRefGoogle Scholar
  61. Takami H, Kawamura T (2003) Dietary changes in the abalone, Haliotis discus hannai, and relationship with the development of the digestive organ. Jpn Agric Res Q 37:89–98. doi: 10.6090/jarq.37.89 CrossRefGoogle Scholar
  62. Tlusty M (2005) Use of digital colour analysis to assess variation within individual adult American lobsters (Homarus americanus) and the process of addition of colour in white lobsters. N Z J Mar Freshw Res 39:571–580. doi: 10.1080/00288330.2005.9517336 CrossRefGoogle Scholar
  63. Travis D (1991) Effective color displays. Theory and practice. Academic press, LondonGoogle Scholar
  64. Tutschulte TC, Connell JH (1988) Feeding behavior and algal food of three species of abalones (Haliotis) in southern California. Mar Ecol Prog Ser 49:57–64CrossRefGoogle Scholar
  65. Underwood AJ, Creese RG (1976) Observations on the biology of the trochid gastropod Austrocochlea constricta (Lamarck) (Prosobranchia). II. The effects of available food on shell-banding pattern. J Exp Mar Biol Ecol 23:229–240. doi: 10.1016/0022-0981(76)90022-8 CrossRefGoogle Scholar
  66. Vander Zanden MJ, Rasmussen JB (2001) Variation in 15N and 13C trophic fractionation: implications for aquatic food web studies. Limnol Oceanogr 46:2061–2066. doi: 10.4319/lo.2001.46.8.2061 CrossRefGoogle Scholar
  67. Wilbur KM, Saleuddin ASM (1983) Shell Formation. In: Saleuddin ASM, Wilbur KM (eds) The Mollusca. Academic Press, New York, pp 235–287CrossRefGoogle Scholar
  68. Winkler FM, Estevez BF, Jollan LB, Garrido JP (2001) Inheritance of the general shell color in the scallop Argopecten purpuratus (Bivalvia: Pectinidae). J Hered 92:521–525. doi: 10.1093/jhered/92.6.521 CrossRefGoogle Scholar
  69. Won N-I, Kawamura T, Takami H et al (2010) Ontogenetic changes in the feeding habits of the abalone Haliotis discus hannai: field verification by stable isotope analyses. Can J Fish Aquat Sci 67:347–356. doi: 10.1139/F09-187 CrossRefGoogle Scholar
  70. Wood AD, Buxton CD (1996) Aspects of the biology of the abalone Haliotis midae (Linne, 1758) on the east coast of South Africa. 1. Feeding biology. South Afr J Mar Sci 17:61–68.CrossRefGoogle Scholar
  71. Yue X, Nie Q, Xiao G, Liu B (2015) Transcriptome Analysis of Shell Color-Related Genes in the Clam Meretrix meretrix. Mar Biotechnol 17:364–374. doi: 10.1007/s10126-015-9625-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Laboratoire des Sciences de l’Environnement Marin (LEMAR)UMR 6539 UBO, CNRS, IRD, IFREMER, Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  2. 2.TBM Environnement/ SommeTechnopole Brest IroisePlouzanéFrance
  3. 3.Institut Universitaire Européen de la Mer (IUEM)University of Brest, UMS 3113PlouzanéFrance
  4. 4.Institute of GeosciencesUniversity of MainzMainzGermany
  5. 5.Observatoire des Sciences de l’UniversUMS 3113, Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  6. 6.BeBEST Laboratoire International AssociéPlouzanéFrance

Personalised recommendations