Marine Biology

, 164:66 | Cite as

Modeling abundance, growth, and health of the solitary coral Scolymia wellsi (Mussidae) in turbid SW Atlantic coral reefs

  • Ericka O. C. Coni
  • Camilo M. Ferreira
  • Pedro M. Meirelles
  • Rafael Menezes
  • Erika F. C. Santana
  • Ana Paula B. Moreira
  • Gilberto M. Amado-Filho
  • Beatrice P. Ferreira
  • Guilherme H. Pereira-Filho
  • Fabiano L. Thompson
  • Rodrigo L. Moura
  • Ronaldo B. Francini-Filho
Original paper

Abstract

Corals from the genus Scolymia have high-sediment-shifting capabilities and are generally associated with habitats with low light levels (shallow shaded/high-turbidity reefs and mesophotic reefs >30 m depth). Here, the spatio-temporal dynamics in abundance, growth, and health (i.e., proportion of bleached/dead tissue) of the solitary coral Scolymia wellsi was modeled in the Abrolhos Bank, eastern Brazil, using boosted regression trees. Models were built using a yearly time series (2006–2008) of digital images of fixed benthic areas (photo-quadrats) and fixed S. wellsi individuals (n = 65). Samples were obtained in sites separated by up to 130 km and subjected to a wide range of biotic/abiotic conditions (as measured in situ and by remote sensing). Scolymia wellsi abundance was highest on inshore turbid reefs, although high nutrient availability (as inferred by the concentration of particulate organic carbon) and temperature were more important than turbidity (Kd490) itself for explaining this latter pattern. Bleaching affected mainly larger (older) individuals inhabiting inshore reefs, where S. wellsi abundance was highest, possibly reflecting natural coral senescence and/or negative density-dependent effects. Coral growth declined with size and with increased contact with turf algae/cyanobacterial mats, these latter organisms well recognized as major competitors for benthic space and coral disease facilitators. Species-specific coral population studies exploring different spatial scales (reef scale and coral scale) and a wide range of biotic/abiotic conditions may provide important insights on the ecological processes operating at the reef community and ecosystem levels.

References

  1. 1.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophot Inter 11(7):36–42Google Scholar
  2. 2.
    Adjeroud M, Augustin D, Galzin R, Salvat B (2002) Natural disturbances and interannual variability of coral reef communities on the outer slope of Tiahura (Moorea, French Polynesia): 1991 to 1997. Mar Ecol Prog Ser 237:121–131. doi:10.3354/meps237121 CrossRefGoogle Scholar
  3. 3.
    Amado-Filho G, Moura RL, Bastos A, Salgado LT, Sumida P, Güth A, Francini-Filho RB, Pereira-Filho G, Abrantes D, Brasileiro P, Bahia R, Leal R, Kaufman L, Kleypas J, Farina M, Thompson F (2012) Rhodolith Beds are Major CaCO3 Bio-factories in the Tropical South West Atlantic. PloS ONE 7:e35171. doi:10.1371/journal.pone.0035171 CrossRefGoogle Scholar
  4. 4.
    Amarasekare P (2003) Competitive coexistence in spatially structured environments: a synthesis. Ecol Lett 6(12):1109–1122. doi:10.1046/j.1461-0248.2003.00530.x CrossRefGoogle Scholar
  5. 5.
    Anderson MJ, Gorley RN, Clarke RK (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  6. 6.
    Anthony KRN (2000) Enhanced particle-feeding capacity of corals on turbid reefs (Great Barrier Reef, Australia). Coral Reefs 19:59–67. doi:10.1007/s003380050227 CrossRefGoogle Scholar
  7. 7.
    Anthony KRN (2006) Enhanced energy status of corals on coastal, high-turbidity reefs. Mar Ecol Prog Ser 319:111–116. doi:10.3354/meps319111 CrossRefGoogle Scholar
  8. 8.
    Anthony K, Maynard JA, Diaz-Pulido G, Mumby PJ, Marshall PA, Cao L, Hoegh-Guldberg O (2011) Ocean acidification and warming will lower coral reef resilience. Global Change Biol 17(5):1798–1808. doi:10.1111/j.1365-2486.2010.02364.x CrossRefGoogle Scholar
  9. 9.
    Baird AH, Marshall PA (2002) Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser 237:133–141. doi:10.3354/meps237133 CrossRefGoogle Scholar
  10. 10.
    Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: Diversity, ecology, and biogeography of Symbiodinium. Ann Rev Ecol Evol Sys 34:661–689. doi:10.1146/annurev.ecolsys.34.011802.132417 CrossRefGoogle Scholar
  11. 11.
    Barott KL, Williams GJ, Vermeij MJA, Harris J, Smith JE, Rohwer FL, Sandin SA (2012) Natural history of coral-algae competition across a gradient of human activity in the Line Islands. Mar Ecol Prog Ser 460:1–12. doi:10.3354/meps09874 CrossRefGoogle Scholar
  12. 12.
    Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833. doi:10.1038/nature02691 CrossRefGoogle Scholar
  13. 13.
    Box SJ, Mumby PJ (2007) Effect of macroalgal competition on growth and survival of juvenile Caribbean corals. Mar Ecol Prog Ser 342:139–149. doi:10.3354/meps342139 CrossRefGoogle Scholar
  14. 14.
    Bruce T, Meirelles PM, Garcia G, Paranhos R, Rezende CE, Moura RL, Francini-Filho RB, Coni EOC, Vasconcelos AT, Amado-Filho G, Hatay M, Schmieder R, Edwards R, Dinsdale E, Thompson FL (2012) Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 7(6):e36687. doi:10.1371/journal.pone.0036687 CrossRefGoogle Scholar
  15. 15.
    Budd AF (2000) Diversity and extinction in the Cenozoic history of Caribbean reefs. Coral Reefs 19(1):25–35. doi:10.1007/s003380050222 CrossRefGoogle Scholar
  16. 16.
    Budd AF, Romano SL, Smith ND, Barbeitos MS (2010) Rethinking the phylogeny of scleractinian corals: a review of morphological and molecular data. Integr Comp Biol 50(3):411–427.doi:10.1093/icb/icq062 CrossRefGoogle Scholar
  17. 17.
    Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractnia). Zool J Linn Soc 166(3):465–529. doi:10.1111/j.1096-3642.2012.00855.x CrossRefGoogle Scholar
  18. 18.
    Ceccarelli DM (2007) Modification of benthic communities by territorial damselfish: a multi-species comparison. Coral Reefs 26:853–866. doi:10.1007/s00338-007-0275-1 CrossRefGoogle Scholar
  19. 19.
    Clarke KR, Gorley RN (2006) PRIMER v.6: user manual/tutorial. PRIMER-E Ltd, PlymouthGoogle Scholar
  20. 20.
    Couce E, Ridgwell A, Hendy EJ (2012) Environmental controls on the global distribution of shallow-water coral reefs. J Biogeogr 39(8):1508–1523. doi:10.1111/j.1365-2699.2012.02706.x CrossRefGoogle Scholar
  21. 21.
    De’ath G (2007) Boosted trees for ecological modeling and prediction. Ecology 88(1):243–251. doi:10.1890/0012-9658(2007)88[243:BTFEMA]2.0.CO;2 CrossRefGoogle Scholar
  22. 22.
    De’ath G, Fabricius K (2010) Water quality as a regional driver of coral biodiversity and macroalgae on the Great Barrier Reef. Ecol Appl 20(3):840–850. doi:10.1890/08-2023.1 CrossRefGoogle Scholar
  23. 23.
    Dinesen ZD (1983) Shade-dwelling corals of the Great Barrier Reef. Mar Ecol Prog Ser 10:173–185CrossRefGoogle Scholar
  24. 24.
    Dutra LXC, Kikuchi RKP, Leão ZMAN (2006) Effects of sediment accumulation on reef corals from Abrolhos, Bahia, Brazil. J Coast Res 2:633–638Google Scholar
  25. 25.
    Elith J, Leathwick JR, Hastie T (2008) A working guide to boosted regression trees. J Anim Ecol 77(4):802–813. doi:10.1111/j.1365-2656.2008.01390.x CrossRefGoogle Scholar
  26. 26.
    Finney JC, Pettay DT, Sampayo EM, Warner ME, Oxenford HA, LaJeunesse TC (2010) The relative significance of host-habitat, depth, and geography on the ecology, endemism, and speciation of coral endosymbionts in the genus Symbiodinium. Microbial Ecol 60(1):250–263. doi:10.1007/s00248-010-9681-y CrossRefGoogle Scholar
  27. 27.
    Francini-Filho RB, Moura RL (2008) Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquatic Conserv Mar Freshwater Ecosyst 18:1166–1179. doi:10.1002/aqc.966 CrossRefGoogle Scholar
  28. 28.
    Francini-Filho RB, Moura RL, Ferreira CM, Coni EOC (2008a) Live coral predation by parrotfishes (Perciformes: Scaridae) in the Abrolhos Bank, eastern Brazil, with comments on the classification of species into functional groups. Neotrop Ichthyol 6:191–200. doi:10.1590/S1679-62252008000200006 CrossRefGoogle Scholar
  29. 29.
    Francini-Filho RB, Moura RL, Thompson FL, Reis RD, Kaufman L, Kikuchi RKP, Leão ZMAN (2008b) Diseases leading to accelerated decline of reef corals in the largest South Atlantic reef complex (Abrolhos Bank, eastern Brazil). Mar Poll Bull 56:1008–1014. doi:10.1016/j.marpolbul.2008.02.013 CrossRefGoogle Scholar
  30. 30.
    Francini-Filho RB, Reis R, Meirelles PM, Moura RL, Thompson FL, Kikuchi RKP, Kaufman L (2010) Seasonal prevalence of white plague like disease on the endemic Brazilian reef coral Mussismilia braziliensis. Latin Am J Aquatic Res 38(2):292–296. doi:10.3856/vol38-issue2-fulltext-16 CrossRefGoogle Scholar
  31. 31.
    Francini-Filho RB, Coni EOC, Meirelles PM, Amado-Filho GM, Thompson FL, Pereira-Filho GH, Bastos AC, Abrantes DP, Ferreira CM, Gibran FZ, Guth AZ, Sumida PYG, Oliveira NL, Kaufman L, Minte-Vera CV, Moura RL (2013) Dynamics of coral reef benthic assemblages of the Abrolhos Bank, eastern Brazil: interferences on natural and anthropogenic drivers. PLoS ONE 8:e4260. doi:10.1371/journal.pone.0054260 CrossRefGoogle Scholar
  32. 33.
    Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25(4):503–512. doi:10.1007/s00338-006-0146-1 CrossRefGoogle Scholar
  33. 34.
    Goffredo S, Chadwick-Furman N (2003) Comparative demography of mushroom corals (Scleractinia: Fungiidae) at Eilat, northern Red Sea. Mar Biol 142(3):411–418. doi:10.1007/s00227-002-0980-9 CrossRefGoogle Scholar
  34. 35.
    Gove JM, Williams GJ, McManus MA, Heron SF, Sandin SA, Vetter OJ, Foley DG (2013) Quantifying climatological ranges and anomalies for Pacific coral reef ecosystems. PloS ONE 8(4):e61974. doi:10.1371/journal.pone.0061974 CrossRefGoogle Scholar
  35. 36.
    Guzner B, Novoplansky A, Chadwick NE (2007) Population dynamics of the reef-building coral Acropora hemprichii as an indicator of reef condition. Mar Ecol Prog Ser 333:143–150. doi:10.3354/meps333143 CrossRefGoogle Scholar
  36. 37.
    Harrington L, Fabricius K, De’ath G, Negri A (2004) Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85(12):3428–3437. doi:10.1890/04-0298 CrossRefGoogle Scholar
  37. 38.
    Hinderstein LM, Marr JCA, Martinez FA, Dowgiallo MJ, Puglise KA, Pyle RL, Zawada DG, Appeldoorn R (2010) Introduction to mesophotic coral ecosystems: characterization, ecology, and management. Coral Reefs 29:247–251. doi:10.1007/s00338-010-0614-5 CrossRefGoogle Scholar
  38. 39.
    Hughes TP, Connell JH (1987) Population dynamics based on size or age? A reef-coral analysis. Am Nat 129(6):818–829. doi:10.1086/284677 CrossRefGoogle Scholar
  39. 40.
    Hughes TP, Rodrigues MJ, Bellwood DR, Ceccarelli D, Hoegh-Guldberg O, McCook L, Moltschaniwskyj N, Pratchett MS, Steneck RS, Willis B (2007) Phase shifts, herbivory, and the resilience of coral reefs to climate change. Curr Biol 17(4):360–365. doi:10.1016/j.cub.2006.12.049 CrossRefGoogle Scholar
  40. 41.
    Idjadi JA, Karlson RH (2007) Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88(10):2449–2454. doi:10.1890/06-2031.1 CrossRefGoogle Scholar
  41. 42.
    Jackson JBC (1977) Competition on marine hard substrata: the adaptive significance of solitary and colonial strategies. Am Nat 111:743–767CrossRefGoogle Scholar
  42. 43.
    Kitahara MV, Cairns SD, Stolarski J, Blair D, Miller DJ (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE 5(7):e11490. doi:10.1371/journal.pone.0011490 CrossRefGoogle Scholar
  43. 44.
    Kleypas JA (1996) Coral reef development under naturally turbid conditions: fringing reefs near Broad Sound, Australia. Coral Reefs 15(3):153–167. doi:10.1007/BF01145886 CrossRefGoogle Scholar
  44. 45.
    Kohler KE, Gill SM (2006) Coral point count with excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Comput Geosci 32:1259–1269. doi:10.1016/j.cageo.2005.11.009 CrossRefGoogle Scholar
  45. 46.
    Kuffner I, Walters L, Becerro M, Paul V, Ritson-Williams R, Beach K (2006) Inhibition of coral recruitment by macroalgae and cyanobacteria. Mar Ecol Prog Ser 323:107–117. doi:10.3354/meps323107 CrossRefGoogle Scholar
  46. 47.
    LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141(2):387–400. doi:10.1007/s00227-002-0829-2 CrossRefGoogle Scholar
  47. 48.
    LaJeunesse TC, Pettay DT, Sampayo EM, Phongsuwan N, Brown B, Obura DO, Hoegh-Guldberg O, Fitt WK (2010) Long-standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus Symbiodinium. J Biogeogr 37:785–800. doi:10.1111/j.1365-2699.2010.02273.x CrossRefGoogle Scholar
  48. 49.
    Lang J (1971) Interspecific aggression by scleractinian corals. 1. The rediscovery of Scolymia cubensis (Milne Edwards Haime). Bull Mar Sci 21(4):952–959Google Scholar
  49. 50.
    Lasker H (1980) Sediment rejection by reef corals: the roles of behavior and morphology in Montastrea cavernosa (Linnaeus). J Exp Mar Biol Ecol 47:77–87. doi:10.1016/0022-0981(80)90139-2 CrossRefGoogle Scholar
  50. 51.
    Leão ZMAN, Ginsburg RN (1997) Living reefs surrounded by siliciclastic sediments: the Abrolhos Coastal reefs, Bahia, Brazil. Proc 8th Int Coral Reef Symp 2:1767–1772Google Scholar
  51. 52.
    Leão ZMAN, Kikuchi RKP (2001) The Abrolhos reefs of Brazil. In: Seeliger U, Kjerfve B (eds) Coastal Marine Ecosystems of Latin America. Springer, Berlin, pp 83–96CrossRefGoogle Scholar
  52. 53.
    Leão ZMAN, Araújo TMF, Nolasco MC (1988) The coral reefs off the coast of eastern Brazil. Proc 6th Int Coral Reef Symp 3:339–347Google Scholar
  53. 54.
    Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin American Coral Reefs. Elsevier, Amsterdam, pp 9–52CrossRefGoogle Scholar
  54. 55.
    Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8. doi:10.1016/j.jembe.2009.05.009 CrossRefGoogle Scholar
  55. 56.
    Lirman D, Fong P (2007) Is proximity to land-based sources of coral stressors an appropriate measure of risk to coral reefs? An example from the Florida Reef Tract. Mar Poll Bull 54(6):779–791. doi:10.1016/j.marpolbul.2006.12.014 CrossRefGoogle Scholar
  56. 57.
    Logan A (1988a) Sediment-shifting capability in the recent solitary coral Scolymia cubensis (Milne-Edwards and Haime) from Bermuda. Bull Mar Sci 43:241–248Google Scholar
  57. 58.
    Logan A (1988b) Budding and fusion in the scleractinian coral Scolymia cubensis (Milne Edwards and Haime) from Bermuda. Bull Mar Sci 42(1):145–149Google Scholar
  58. 59.
    Loiola M, Oliveira MD, Kikuchi RK (2013) Tolerance of Brazilian brain coral Mussismilia braziliensis to sediment and organic matter inputs. Mar Poll Bull 77(1):55–62. doi:10.1016/j.marpolbul.2013.10.033 CrossRefGoogle Scholar
  59. 60.
    Magalhães GM, Amado-Filho GM, Rosa MR, Moura RL, Brasileiro PS, Moraes FC, Francini-Filho RB, Pereira-Filho GH (2015). Changes in benthic communities along a 0–60 m depth gradient in the remote St. Peter and St. Paul Archipelago (Mid-Atlantic Ridge, Brazil). Bul Mar Sci 91: 377–396. doi:10.5343/bms.2014.1044 CrossRefGoogle Scholar
  60. 61.
    Maina J, Moel H, Zinke J, Madin J, McClanahan T, Vermaat JE (2013) Human deforestation outweighs future climate change impacts of sedimentation on coral reefs. Nature Commun 4:1986. doi:10.1038/ncomms2986 CrossRefGoogle Scholar
  61. 62.
    Minte-Vera CV, Moura RL, Francini-Filho RB (2008) Nested sampling: an improved visual-census technique for studying reef fish assemblages. Mar Ecol Prog Ser 367:283–293. doi:10.3354/meps07511 CrossRefGoogle Scholar
  62. 63.
    Morgan KM, Perry CT, Smithers SG, Johnson JA, Daniell JJ (2016) Evidence of extensive reef development and high coral cover in nearshore environments: implications for understanding coral adaptation in turbid settings. Sci Rep 6:29616. doi:10.1038/srep29616 CrossRefGoogle Scholar
  63. 64.
    Moura RL, Francini-Filho RB, Chaves EM, Minte-Vera CV, LindemanK C (2011) Use of riverine through reef habitat systems by dog snapper (Lutjanus jocu) in eastern Brazil. Estuar Coast Shelf S 95(1):274–278. doi:10.1016/j.ecss.2011.08.010 CrossRefGoogle Scholar
  64. 65.
    Moura RL, Secchin NA, Amado-Filho GM, Francini-Filho RB, Freitas MO, Minte-Vera CV, Teixeira JB, Thompson FL, Dutra GF, Sumida PYG, Güth AZ, Lopes RM, Bastos AC (2013) Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont Shelf Res 70:109–117. doi:10.1016/j.csr.2013.04.036 CrossRefGoogle Scholar
  65. 66.
    Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition: I. δ13C of zooxanthellae and animal tissue vs depth. Mar Biol 100(2):185–193. doi:10.1007/BF00391957 CrossRefGoogle Scholar
  66. 67.
    Newman SP, Meesters EH, Dryden CS, Williams SM, Sanchez C, Mumby PJ, Polunin NVC (2015) Reef flattening effects on total richness and species response in the Caribbean. J Anim Ecol 84(6):1678–1689. doi:10.1111/1365-2656.12429 CrossRefGoogle Scholar
  67. 68.
    Ortiz JC, Gomez-Cabrera MDC, Hoegh-Guldberg O (2009) Effect of colony size and surrounding substrate on corals experiencing a mild bleaching event on Heron Island reef flat (southern Great Barrier Reef, Australia). Coral Reefs 28:999–1003. doi:10.1007/s00338-009-0546-0 CrossRefGoogle Scholar
  68. 69.
    Osborne K, Dolman AM, Burgess SC, Johns KA (2011) Disturbance and the dynamics of coral cover on the Great Barrier Reef (1995–2009). PLoS ONE 6(3):e17516. doi:10.1371/journal.pone.0017516 CrossRefGoogle Scholar
  69. 70.
    Pereira-Filho GH, Amado-Filho GM, Guimarães SM, Moura RL, Sumida PYG, Abrantes DP, Bahia RG, Güth AZ, Jorge RR, Francini-Filho RB (2011) Reef fish and benthic assemblages of the Trindade and Martin Vaz Island group, southwestern Atlantic. Braz J Oceanogr 59(3):201–212. doi:10.1590/S1679-87592011000300001 CrossRefGoogle Scholar
  70. 71.
    Pires DO, Castro CB, Ratto CC (2000) Sexual reproduction of the solitary coral Scolymia wellsi Laborel (Cnidaria, Scleractinia) from the Abrolhos Reef Complex, Brazil. Proc 9th Int Coral Reef Symp 1:381–384.Google Scholar
  71. 72.
    Pires DO, Segal B, Caparelli AC (2011) Reproductive effort of an endemic major reef builder along an inshore–offshore gradient in south-western Atlantic. J Mar Biol Assoc UK 91(8):1613–1616. doi:10.1017/S0025315410000767 CrossRefGoogle Scholar
  72. 73.
    Pittman SJ, Brown KA (2011) Multi-scale approach for predicting fish species distributions across coral reef seascapes. PloS ONE 6(5):e20583. doi:10.1371/journal.pone.0020583 CrossRefGoogle Scholar
  73. 74.
    Pittman SJ, Costa BM, Battista TA (2009) Using lidar bathymetry and boosted regression trees to predict the diversity and abundance of fish and corals. J Coastal Res 53:27–38. doi:10.2112/SI53-004.1 CrossRefGoogle Scholar
  74. 75.
    Pohl T, Al-Muqdadi SW, Ali MH, Fawzi NAM, Ehrlich H, Merkel B (2014) Discovery of a living coral reef in the coastal waters of Iraq. Sci Rep 4:4250. doi:10.1038/srep04250 CrossRefGoogle Scholar
  75. 76.
    Pollock FJ, Lamb JB, Field SN, Heron SF, Schaffelke B, Shedrawi G, Bourne DG, Willis BL (2014) Sediment and turbidity associated with offshore dredging increase coral disease prevalence on nearby reefs. PLoS ONE 9(7):e102498. doi:10.1371/journal.pone.0102498 CrossRefGoogle Scholar
  76. 77.
    R Core Development Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  77. 78.
    Richards ZT, Garcia RA, Wallace CC, Rosser NL, Muir PR (2015) A diverse assemblage of reef corals thriving in a dynamic intertidal reef setting (Bonaparte Archipelago, Kimberley, Australia). PloS ONE 10(2):e0117791. doi:10.1371/journal.pone.0117791 CrossRefGoogle Scholar
  78. 79.
    Richardson CA, Dustan P, Lang JC (1979) Maintenance of living space by sweeper tentacles of Montastrea cavernosa, a Caribbean reef coral. Mar Biol 55(3):181–186. doi:10.1007/BF00396816 CrossRefGoogle Scholar
  79. 80.
    Riegl B, Purkis SJ, Keck J, Rowlands GP (2009) Monitored and modeled coral population dynamics and the refuge concept. Mar Poll Bull 58(1):24–38. doi:10.1016/j.marpolbul.2008.10.019 CrossRefGoogle Scholar
  80. 81.
    Rinkevich B, Loya Y (1986) Senescence and dying signals in a reef building coral. Experientia 42(3):320–322. doi:10.1007/BF01942521 CrossRefGoogle Scholar
  81. 82.
    Ritson-Williams R, Paul VJ, Bonito V (2005) Marine benthic cyanobacteria overgrow coral reef organisms. Coral Reefs 24(4):629–629. doi:10.1007/s00338-005-0059-4 CrossRefGoogle Scholar
  82. 83.
    Rogers CS (1983) Sublethal and lethal effects of sediments applied to common Caribbean reef corals in the field. Mar Poll Bull 14:378–382. doi:10.1016/0025-326X(83)90602-1 CrossRefGoogle Scholar
  83. 84.
    Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202CrossRefGoogle Scholar
  84. 85.
    Rotjan RD, Lewis SM (2008) Impact of coral predators on tropical reefs. Mar Ecol Prog Ser 367:73–91. doi:10.3354/meps07531 CrossRefGoogle Scholar
  85. 86.
    Sanders D, Baron-Szabo RC (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeogr Palaeoclim Palaeoecol 216(1):139–181. doi:10.1016/j.palaeo.2004.10.008 CrossRefGoogle Scholar
  86. 87.
    Santana EFC, Alves AL, Santos AM, Gloria GSM, Perez CD, Gomes PB (2015) Trophic ecology of the zoanthid Palythoa caribaeorum (Cnidaria: Anthozoa) on tropical reefs. J Mar Biol Assoc UK 95(2):301–309. doi:10.1017/S0025315414001726 CrossRefGoogle Scholar
  87. 88.
    Segal B, Castro CB (2011) Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil. Brazil J Oceanogr 59(2):119–129. doi:10.1590/S1679-87592011000200001 CrossRefGoogle Scholar
  88. 89.
    Segal B, Evangelista H, Kampel M, Gonçalves AC, Polito PS, Santos EA (2008) Potential impacts of polar fronts on sedimentation processes at Abrolhos coral reef (South-West Atlantic Ocean/Brazil). Cont Shelf Res 28(4):533–544. doi:10.1016/j.csr.2007.11.003 CrossRefGoogle Scholar
  89. 90.
    Selig ER, Casey KS, Bruno JF (2010) New insights into global patterns of ocean temperature anomalies: implications for coral reef health and management. Global Ecol Biogeogr 19(3):397–411. doi:10.1111/j.1466-8238.2009.00522.x CrossRefGoogle Scholar
  90. 91.
    Shantz AA, Stier AC, Idjadi JA (2011) Coral density and predation affect growth of a reef-building coral. Coral Reefs 30:363–367. doi:10.1007/s00338-010-0694-2 CrossRefGoogle Scholar
  91. 92.
    Shenkar N, Fine M, Loya Y (2005) Size matters: bleaching dynamics of the coral Oculina patagonica. Mar Ecol Prog Ser 294:181–188. doi:10.3354/meps294181 CrossRefGoogle Scholar
  92. 93.
    Silva AS, Leão ZMAN, Kikuchi RKP, Costa AB, Souza JRB (2013) Sedimentation in the coastal reefs of Abrolhos over the last decades. Cont Shelf Res 70:159–167. doi:10.1016/j.csr.2013.06.002 CrossRefGoogle Scholar
  93. 94.
    Stafford-Smith MG (1993) Sediment-rejection efficiency of 22 species of Australian scleractinian corals. Mar Biol 115:229–243. doi:10.1007/BF00346340 CrossRefGoogle Scholar
  94. 95.
    Suchanek TH, Green DJ (1981) Interspecific competition between Palythoa caribaeorum and other sessile invertebrates on St. Croix reefs, US Virgin Islands. Proc 4th Int Coral Reef Symp 2:679–684.Google Scholar
  95. 96.
    Sutherland KP, Porter JW, Torres C (2004) Disease and immunity in Caribbean and Indo-Pacific zooxanthellate corals. Mar Ecol Prog Ser 266:265–272. doi:10.3354/meps266273 CrossRefGoogle Scholar
  96. 97.
    Suzuki G, Hayashibara T (2010) Do epibenthic algae induce species-specific settlement of coral larvae? J Mar Biol Assoc UK 91(3):677–683. doi:10.1017/S0025315410000573 CrossRefGoogle Scholar
  97. 98.
    Tanner JE (2002) Consequences of density-dependent heterotrophic feeding for a partial autotroph. Mar Ecol Prog Ser 227:293–304. doi:10.3354/meps227293 CrossRefGoogle Scholar
  98. 99.
    Thomson DP, Frisch AJ (2010) Extraordinarily high coral cover on a nearshore, high-latitude reef in south-west Australia. Coral Reefs 29(4):923–927. doi:10.1007/s00338-010-0650-1 CrossRefGoogle Scholar
  99. 100.
    Titlyanov EA, Yakovleva IM, Titlyanova TV (2007) Interactions between benthic algae (Lyngbya bouillonii, Dictyota dichotoma) and scleractinian coral Porites lutea in direct contact. J Exp Mar Biol Ecol 342(2):282–291. doi:10.1016/j.jembe.2006.11.007 CrossRefGoogle Scholar
  100. 101.
    Tomascik T, Logan A (1990) A comparison of peripheral growth rates in the recent solitary coral Scolymia cubensis (Milne-Edwards and Haime) from Barbados and Bermuda. Bull Mar Sci 46(3):799–806Google Scholar
  101. 102.
    Vermeij MJ, Sandin SA (2008) Density-dependent settlement and mortality structure the earliest life phases of a coral population. Ecology 89:1994–2004CrossRefGoogle Scholar
  102. 103.
    Vermeij MJA, Moorselaar IV, Engelhard S, Hörnlein C, Vonk SM, Visser PM (2010) The effects of nutrient enrichment and herbivore abundance on the ability of turf algae overgrow coral in the Caribbean. PLoS ONE 5(12):e14312. doi:10.1371/journal.pone.0014312 CrossRefGoogle Scholar
  103. 104.
    Veron JEN (1995) Corals in space and time: the biogeography and evolution of the Scleractinia. Cornell University Press, IthacaGoogle Scholar
  104. 105.
    Veron JEN, Hoegh-Guldberg O, Lenton TM, Lough JM, Obura DO, Pearce-Kelly P, Sheppard CRC, Spalding M, Stafford-Smith MG, Rogers AD (2009) The coral reef crisis: the critical importance of <350 ppm CO2. Mar Poll Bull 58(10):1428–1436. doi:10.1016/j.marpolbul.2009.09.009 CrossRefGoogle Scholar
  105. 106.
    Vollmer SV, Edmunds PJ (2000) Allometric scaling in small colonies of the scleractinian coral Siderastrea siderea (Ellis and Solander). Biol Bull 199(1):21–28CrossRefGoogle Scholar
  106. 107.
    Williams GJ, Aeby GS, Cowie RO, Davy SK (2010) Predictive modeling of coral disease distribution within a reef system. PLoS ONE 5(2):e9264. doi:10.1371/journal.pone.0009264 CrossRefGoogle Scholar
  107. 108.
    Yee SH, Barron MG (2010) Predicting coral bleaching in response to environmental stressors using 8 years of global-scale data. Environ Monit Assess 161(1–4):423–438. doi:10.1007/s10661-009-0758-3 CrossRefGoogle Scholar
  108. 109.
    Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New Jersey, p. 363Google Scholar
  109. 32.
    Froese R, Pauly D (eds) (2013) FishBase. http://www.fishbase.org. Version 13. Accessed 13 June 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Ericka O. C. Coni
    • 1
  • Camilo M. Ferreira
    • 1
  • Pedro M. Meirelles
    • 2
  • Rafael Menezes
    • 3
  • Erika F. C. Santana
    • 3
  • Ana Paula B. Moreira
    • 2
  • Gilberto M. Amado-Filho
    • 4
  • Beatrice P. Ferreira
    • 5
  • Guilherme H. Pereira-Filho
    • 6
  • Fabiano L. Thompson
    • 7
  • Rodrigo L. Moura
    • 7
  • Ronaldo B. Francini-Filho
    • 8
  1. 1.Programa de Pós-Graduação em Ecologia e ConservaçãoUniversidade Estadual da ParaíbaCampina GrandeBrazil
  2. 2.Programa de Pós-Graduação em Genética, Instituto de Biologia, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Programa de Pós-Graduação em Ciências Biológicas (Zoologia)Universidade Federal da ParaíbaJoão PessoaBrazil
  4. 4.Instituto de Pesquisas Jardim Botânico do Rio de JaneiroRio de JaneiroBrazil
  5. 5.Departamento de Oceanografia, Centro de Tecnologia e GeociênciasUniversidade Federal de PernambucoRecifeBrazil
  6. 6.Instituto do MarUniversidade Federal de São PauloSantosBrazil
  7. 7.Departamento de Biologia Marinha, Instituto de Biologia, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  8. 8.Departamento de Engenharia e Meio AmbienteUniversidade Federal da ParaíbaRio TintoBrazil

Personalised recommendations