Marine Biology

, 164:48 | Cite as

Comparing the foraging strategies of a seabird predator when recovering from a drastic climatic event

  • Milton R. Avalos
  • Jaime A. Ramos
  • Margarida Soares
  • Filipe R. Ceia
  • Ana I. Fagundes
  • Cátia Gouveia
  • Dília Menezes
  • Vítor H. PaivaEmail author
Original paper


Seabirds due to their status as sentinels of the marine environment can indicate qualitative changes at various levels of the food web. Furthermore, changes in marine productivity have been correlated with fluctuations in large-scale atmospheric conditions driven by global indices, such as the North Atlantic Oscillation (NAO) index. During the winter of 2009/2010, the second lowest NAO index in history was recorded leading to detrimental conditions that influenced productivity levels in the northeast Atlantic. The response of the Cory’s Shearwater Calonectris borealis, during the period of ameliorating climatic conditions from this drastic event, was monitored in two islands with contrasting productivity patterns: Berlenga, located on the rich upwelling area of the Portuguese shelf; and Cima Islet (Porto Santo Island), located in a poor oceanic environment in the Madeira Archipelago. We collected a multi-year GPS-tracking data set (2011–2015) from adult breeders during the chick-rearing season to examine their at-sea foraging distribution. During a year of low productivity, kernel estimations demonstrated that Cima Islet birds expanded their home ranges and core foraging areas all over the northeast Atlantic, whereas Berlenga birds maintained their distribution close to the breeding colony. Once oceanographic conditions ameliorated from 2012 to 2015, birds decreased significantly their foraging effort, and oceanic breeders concentrated their activity closer to the breeding colony. Analysis of habitat use by means of Maximum Entropy Modelling confirmed distance-to-colony as the most important predictor in the distribution of Cory’s Shearwater. Environmental variables describing sea surface temperature, bathymetry, and chlorophyll a were more influential in Porto Santo, indicating higher sensitivity of the oceanic population to marine productivity proxies. Our study confirms that the Cory’s Shearwater possesses enormous flexibility in its foraging tactics and that neither oceanic nor neritic populations disperse randomly from their breeding colonies to the open ocean even under conditions of environmental stochasticity. Instead, populations breeding in contrasting environments vary in their responses according to their strategies and to the changing levels of marine productivity in the surroundings of their colonies.


GPS loggers Spatial ecology Environmental stochasticity Neritic and oceanic environments North Atlantic Oscillation index Cory’s Shearwater 



We thank the wardens Madeira Natural Park Service and the Reserva Natural das Berlengas for their help with boat trips, accommodation and companionship. Laura Castelló, Lucas Krüger, and all the volunteers that provided a valuable help during fieldwork.

Compliance with ethical standards

Financial support for fieldwork was provided by the EU project LIFE09 NAT/PT/000041 and by EU INTERREG project FAME 2009-1/089. This research was co-sponsored by the Foundation for Science and Technology (FCT; Portugal) and the European Social Fund (POPH, EU) through post-doctoral grants to F.R.C. (SFRH/BPD/95372/2013) and V.H.P. (SFRH/BPD/85024/2012) and the strategic program of MARE (MARE—UID/MAR/04292/2013). All authors declare that they have no conflict of interests. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Specifically, the experimental approach was conducted with permission from the Portuguese Government—‘Instituto de Conservação da Natureza e Florestas (ICNF)’—with Permit No. 89/2011/CAPT. All methods used in this study comply with the Portuguese laws No. 140/99, No. 49/2005, No. 316/89, and No. 180/2008.

Supplementary material

227_2017_3082_MOESM1_ESM.pdf (652 kb)
Supplementary material 1 (PDF 652 KB)


  1. Afán I, Navarro J, Cardador L et al (2014) Foraging movements and habitat niche of two closely related seabirds breeding in sympatry. Mar Biol 161:657–668. doi: 10.1007/s00227-013-2368-4 CrossRefGoogle Scholar
  2. Ainley DG, Ribic CA, Ballard G et al (2016) Geographic structure of Adélie Penguin populations: Overlap in colony-specific foraging areas published by: Wiley Stable URL: References Linked references are available on JSTOR for this article: You may need to log. 74:159–178
  3. Alley RB, Marotzke J, Nordhaus WD et al (2003) Abrupt climate change. Science 299:2005–2010. doi: 10.1126/science.1081056 CrossRefGoogle Scholar
  4. Alonso H, Granadeiro JP, Paiva VH et al (2012) Parent-offspring dietary segregation of Cory’s shearwaters breeding in contrasting environments. Mar Biol 159:1197–1207. doi: 10.1007/s00227-012-1900-2 CrossRefGoogle Scholar
  5. Araujo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species-climate impact models under climate change. Glob Chang Biol 11:1504–1513. doi: 10.1111/j.1365-2486.2005.01000.x
  6. Arístegui J, Barton ED, Álvarez-Salgado X a. et al (2009) Sub-regional ecosystem variability in the Canary Current upwelling. Prog Oceanogr 83:33–48. doi: 10.1016/j.pocean.2009.07.031 CrossRefGoogle Scholar
  7. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi: 10.18637/jss.v067.i01 CrossRefGoogle Scholar
  8. Bellier E, Planque B, Petitgas P (2007) Historical fluctuations in spawning location of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) in the Bay of Biscay during 1967–73 and 2000–2004. Fish Oceanogr 16:1–15. doi: 10.1111/j.1365-2419.2006.00410.x CrossRefGoogle Scholar
  9. Benazzouz A, Mordane S, Orbi A et al (2014) An improved coastal upwelling index from sea surface temperature using satellite-based approach—the case of the Canary Current upwelling system. Cont Shelf Res 81:38–54. doi: 10.1016/j.csr.2014.03.012 CrossRefGoogle Scholar
  10. Best S, Lundrigan S, Demirov E, Wroblewski J (2011) Interannual variability of physical oceanographic characteristics of Gilbert Bay: a marine protected area in Labrador, Canada. J Mar Syst 88:128–138. doi: 10.1016/j.jmarsys.2011.02.012 CrossRefGoogle Scholar
  11. BirdLife International (2016) Species factsheet: Calonectris borealis. Accessed 08 Feb 2016
  12. Block BA, Jonsen ID, Jorgensen SJ et al (2011) Tracking apex marine predator movements in a dynamic ocean. Nature 475:86–90. doi: 10.1038/nature10082 CrossRefGoogle Scholar
  13. Brown ME (1996) Assessing Body Condition Index in Birds. In: Nolan V, Ketterson ED (eds) Current ornithology, vol 13. Springer US, Boston, MAGoogle Scholar
  14. Burger AE, Shaffer S a (2008) Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125:253–264. doi: 10.1525/auk.2008.1408 CrossRefGoogle Scholar
  15. Caldeira RMA, Groom S, Miller P et al (2002) Sea-surface signatures of the island mass effect phenomena around Madeira Island, Northeast Atlantic. Remote Sens Environ 80:336–360. doi: 10.1016/S0034-4257(01)00316-9 CrossRefGoogle Scholar
  16. Calenge C (2006) The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecol Modell 197:516–519. doi: 10.1016/j.ecolmodel.2006.03.017
  17. Ceia FR, Paiva VH, Ceia RS et al (2014a) Spatial foraging segregation by close neighbours in a wide-ranging seabird. Oecologia 177:431–440. doi: 10.1007/s00442-014-3109-1 CrossRefGoogle Scholar
  18. Ceia FR, Paiva VH, Garthe S et al (2014b) Can variations in the spatial distribution at sea and isotopic niche width be associated with consistency in the isotopic niche of a pelagic seabird species? Mar Biol 161:1861–1872. doi: 10.1007/s00227-014-2468-9 CrossRefGoogle Scholar
  19. Chaurand T, Weimerskirch H (1994) The regular alternation of short and long foraging trips in the blue petrel Halobaena caerulea: a previously undescribed strategy of food provisioning in a pelagic seabird. J Anim Ecol 63:275–282. doi: 10.2307/5546 CrossRefGoogle Scholar
  20. Crawford RJM, Makhado AB, Whittington P a. et al (2015) A changing distribution of seabirds in South Africa—the possible impact of climate and its consequences. Front Ecol Evol 3:1–11. doi: 10.3389/fevo.2015.00010 CrossRefGoogle Scholar
  21. Davis SE, Nager RG, Furness RW (2005) Food availability affects adult survival as well as breeding success of parasitic jaegers. Ecology 86:1047–1056. doi: 10.1890/04-0989 CrossRefGoogle Scholar
  22. Dias MP, Granadeiro JP (2011) Breaking the routine: individual Cory’s shearwaters shift winter destinations between hemispheres and across ocean basins. Proc R Soc B. doi: 10.1098/rspb.2010.2114 Google Scholar
  23. Dias MP, Granadeiro JP, Catry P (2012) Working the day or the night shift? foraging schedules of Cory's shearwaters vary according to marine habitat. Mar Ecol Prog Ser 467:245–252. doi: 10.3354/meps09966 CrossRefGoogle Scholar
  24. Dean B, Kirk H, Fayet A et al (2015) Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. 538:239–248. doi: 10.3354/meps11443
  25. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography (Cop) 29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x CrossRefGoogle Scholar
  26. Fréon P, Barange M, Arístegui J (2009) Eastern Boundary Upwelling Ecosystems: Integrative and comparative approaches. Prog Oceanogr 83:1–14. doi: 10.1016/j.pocean.2009.08.001 CrossRefGoogle Scholar
  27. Grémillet D, Boulinier T (2009) Spatial ecology and conservation of seabirds facing global climate change: a review. Mar Ecol Prog Ser 391:121–137. doi: 10.3354/meps08212 CrossRefGoogle Scholar
  28. Grémillet D, Péron C, Pons J-B et al (2014) Irreplaceable area extends marine conservation hotspot off Tunisia: insights from GPS-tracking Scopoli’s shearwaters from the largest seabird colony in the Mediterranean. Mar Biol 161:2669–2680. doi: 10.1007/s00227-014-2538-z CrossRefGoogle Scholar
  29. Haug FD, Paiva VH, Werner AC, Ramos JA (2015) Foraging by experienced and inexperienced Cory’s shearwater along a 3-year period of ameliorating foraging conditions. Mar Biol 162:649–660. doi: 10.1007/s00227-015-2612-1 CrossRefGoogle Scholar
  30. Heggøy O, Christensen-Dalsgaard S, Ranke PS et al (2015) GPS-loggers influence behaviour and physiology in the black-legged kittiwake Rissa tridactyla. Mar Ecol Prog Ser 521:237–248. doi: 10.3354/meps11140 CrossRefGoogle Scholar
  31. Hurrell JW (1995) Decadal trends in the North Atlantic oscillation: regional temperatures and precipitation. Science 269:676–679. doi: 10.1126/science.269.5224.676 CrossRefGoogle Scholar
  32. Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (2003) An Overview of the North Atlantic Oscillation. In: Hurrell JW, Kushnir Y, Ottersen G, Visbeck M (eds) The North Atlantic oscillation: climatic significance and environmental impact. American Geophysical Union, Washington, D. CCrossRefGoogle Scholar
  33. Igual JM, Forero MG, Tavecchia G et al (2005) Short-term effects of data-loggers on Cory’s shearwater (Calonectris diomedea). Mar Biol 146:619–624. doi: 10.1007/s00227-004-1461-0 CrossRefGoogle Scholar
  34. Lecoq M, Geraldes P, Andrade J (2011) First complete census of Cory’s Shearwaters Calonectris diomedea borealis breeding at Berlengas Islands (Portugal), including the small islets of the archipelago. Airo 21:31–34Google Scholar
  35. Louzao M, Bécares J, Rodríguez B et al (2009) Combining vessel-based surveys and tracking data to identify key marine areas for seabirds. Mar Ecol Prog Ser 391:183–197. doi: 10.3354/meps08124 CrossRefGoogle Scholar
  36. Louzao M, Delord K, García D et al (2012) Protecting persistent dynamic oceanographic features: transboundary conservation efforts are needed for the critically endangered balearic shearwater. PLoS One. doi: 10.1371/journal.pone.0035728 Google Scholar
  37. Ludynia K, Dehnhard N, Poisbleau M et al (2012) Evaluating the impact of handling and logger attachment on foraging parameters and physiology in Southern Rockhopper Penguins. PLoS One. doi: 10.1371/journal.pone.0050429 Google Scholar
  38. Mann KH, Lazier JRN (2006) Dynamics of marine ecosystems, 3rd edn. Blackwell, OxfordGoogle Scholar
  39. Martin B, Christiansen B (2009) Distribution of zooplankton biomass at three seamounts in the NE Atlantic. Deep Sea Res Part II Top Stud Oceanogr 56:2671–2682. doi: 10.1016/j.dsr2.2008.12.026 CrossRefGoogle Scholar
  40. Morato T, Varkey DA, Damaso C et al (2008) Evidence of a seamount effect on aggregating visitors. Mar Ecol Prog Ser 357:23–32. doi: 10.3354/meps07269 CrossRefGoogle Scholar
  41. Morato T, Hoyle SD, Allain V, Nicol SJ (2010) Seamounts are hotspots of pelagic biodiversity in the open ocean. Proc Natl Acad Sci USA 107:9707–9711. doi: 10.1073/pnas.0910290107 CrossRefGoogle Scholar
  42. Onley D, Scofield P (2007) Field Guide to the albatrosses, petrels and shearwaters of the world. Christopher Helm, LondonGoogle Scholar
  43. Paiva VH, Geraldes P, Ramírez I et al (2010a) Oceanographic characteristics of areas used by Cory’s shearwaters during short and long foraging trips in the North Atlantic. Mar Biol 157:1385–1399. doi: 10.1007/s00227-010-1417-5 CrossRefGoogle Scholar
  44. Paiva VH, Geraldes P, Ramírez I et al (2010b) Foraging plasticity in a pelagic seabird species along a marine productivity gradient. Mar Ecol Prog Ser 398:259–274. doi: 10.3354/meps08319 CrossRefGoogle Scholar
  45. Paiva VH, Geraldes P, Ramírez I et al (2010c) How area restricted search of a pelagic seabird changes while performing a dual foraging strategy. Oikos 119:1423–1434. doi: 10.1111/j.1600-0706.2010.18294.x CrossRefGoogle Scholar
  46. Paiva VH, Xavier J, Geraldes P et al (2010d) Foraging ecology of Cory’s shearwaters in different oceanic environments of the North Atlantic. Mar Ecol Prog Ser 410:257–268. doi: 10.3354/meps08617 CrossRefGoogle Scholar
  47. Paiva VH, Geraldes P, Marques V et al (2013a) Effects of environmental variability on different trophic levels of the North Atlantic food web. Mar Ecol Prog Ser 477:15–28. doi: 10.3354/meps10180 CrossRefGoogle Scholar
  48. Paiva VH, Geraldes P, Ramirez I et al (2013b) Overcoming difficult times: the behavioural resilience of a marine predator when facing environmental stochasticity. Mar Ecol Prog Ser 486:277–288. doi: 10.3354/meps10332 CrossRefGoogle Scholar
  49. Peron C, Weimerskirch H, Bost CA (2012) Projected poleward shift of king penguins’ (Aptenodytes patagonicus) foraging range at the Crozet Islands, southern Indian Ocean. Proc R Soc B Biol Sci 279:2515–2523. doi: 10.1098/rspb.2011.2705
  50. Péron C, Delord K, Phillips R a. et al (2010) Seasonal variation in oceanographic habitat and behaviour of white-chinned petrels Procellaria aequinoctialis from Kerguelen Island. Mar Ecol Prog Ser 416:267–284. doi: 10.3354/meps08785 CrossRefGoogle Scholar
  51. Phillips RA, Xavier JC, Croxall JP (2003) Effects of satellite transmitters on albatrosses and petrels. Auk 120:1082–1090. doi: 10.2307/4090279 CrossRefGoogle Scholar
  52. Phillips R a, Silk JRD, Croxall JP et al (2005) Summer distribution and migration of nonbreeding albatrosses: individual consistencies and implications for conservation published by: Ecological Society of America summer distribution and migration of nonbreeding albatrosses: individual Consistencies. Ecology 86:2386–2396CrossRefGoogle Scholar
  53. Ramírez I, Geraldes P, Meirinho A, Amorim P, Paiva VH (2008) Important areas for seabirds in Portugal. Project LIFE04NAT/ PT/000213, Sociedade Portuguesa Para o Estudo das Aves, LisboaGoogle Scholar
  54. Ramos JA, Moniz Z, Solá E, Monteiro LR (2003) in the Azores: Timing of breeding influenced wing-length at fledging, and egg size may be an indicator of fledging weight and the amount of food received by chicks. Bird Study 50:47–54. doi: 10.1080/00063650309461289
  55. Ramos R, Granadeiro JP, Rodríguez B et al (2013) Meta-population feeding grounds of cory’s shearwater in the subtropical atlantic ocean: Implications for the definition of marine protected areas based on tracking studies. Divers Distrib 19:1284–1298. doi: 10.1111/ddi.12088 CrossRefGoogle Scholar
  56. Rodriguez JM, Moyano M, Hernandez-Leon S (2009) The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: a review. Prog Oceanogr 83:314–321. doi: 10.1016/j.pocean.2009.07.009 CrossRefGoogle Scholar
  57. Santos AMP, Chícharo A, Dos Santos A et al (2007) Physical-biological interactions in the life history of small pelagic fish in the Western Iberia Upwelling Ecosystem. Prog Oceanogr 74:192–209. doi: 10.1016/j.pocean.2007.04.008 CrossRefGoogle Scholar
  58. Sousa FM, Nascimento S, Casimiro H, Boutov D (2008) Identification of upwelling areas on sea surface temperature images using fuzzy clustering. Remote Sens Environ 112:2817–2823. doi: 10.1016/j.rse.2008.01.014 CrossRefGoogle Scholar
  59. Steiner I, Bürgi C, Werffeli S et al (2000) A GPS logger and software for analysis of homing in pigeons and small mammals. Physiol Behav 71:589–596. doi: 10.1016/S0031-9384(00)00409-1 CrossRefGoogle Scholar
  60. Suryan RM, Santora J a., Sydeman WJ (2012) New approach for using remotely sensed chlorophyll a to identify seabird hotspots. Mar Ecol Prog Ser 451:213–225. doi: 10.3354/meps09597 CrossRefGoogle Scholar
  61. Tremblay Y, Bertrand S, Henry RW et al (2009) Analytical approaches to investigating seabird-environment interactions: a review. Mar Ecol Prog Ser 391:153–163. doi: 10.3354/meps08146 CrossRefGoogle Scholar
  62. Tveraa T, Sæther BE, Aanes R, Erikstad KE (1998) Body mass and parental decisions in the Antarctic petrel Thalassoica antarctica: how long should the parents guard the chick? Behav Ecol Sociobiol 43:73–79. doi: 10.1007/s002650050468 CrossRefGoogle Scholar
  63. Uttley JD, Walton P, Monaghan P, Austin G (1994) The effects of food abundance on breeding performance and adult time budgets of guillemots Uria aalge. Ibis 236:205–213. doi: 10.1111/j.1474-919X.1994.tb01086.x Google Scholar
  64. Wang D, Gouhier TC, Menge BA, Ganguly AR (2015) Intensification and spatial homogenization of coastal upwelling under climate change. Nature 518:390–394. doi: 10.1038/nature14235 CrossRefGoogle Scholar
  65. Weimerskirch H (2007) Are seabirds foraging for unpredictable resources? Deep Res Part II Top Stud Oceanogr 54:211–223. doi: 10.1016/j.dsr2.2006.11.013 CrossRefGoogle Scholar
  66. Weimerskirch H, Barbraud C, Lys P (2000) Sex differences in parental investment and chick growth in wandering albatrosses: fitness consequences. Ecology 81:309–318. doi: 10.2307/177428 CrossRefGoogle Scholar
  67. Worton BJ (1989) Kernel methods for estimating the utilization distribution in home-range studies. Ecology 70:164–168. doi: 10.2307/1938423 CrossRefGoogle Scholar
  68. Zuur A, Ieno EN, Smith GM (2007) Analysing ecological data. Springer, New YorkCrossRefGoogle Scholar
  69. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14. doi: 10.1111/j.2041-210X.2009.00001.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Milton R. Avalos
    • 1
  • Jaime A. Ramos
    • 1
  • Margarida Soares
    • 1
  • Filipe R. Ceia
    • 1
  • Ana I. Fagundes
    • 2
  • Cátia Gouveia
    • 2
  • Dília Menezes
    • 3
  • Vítor H. Paiva
    • 1
    Email author
  1. 1.MARE-Marine and Environmental Sciences Centre, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.Sociedade Portuguesa para o Estudo das AvesFunchalPortugal
  3. 3.Parque Natural da Madeira, Quinta do Bom SucessoFunchalPortugal

Personalised recommendations