Skip to main content

Advertisement

Log in

Importance of soft canopy structure for labrid fish communities in estuarine mesohabitats

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Hard structural complexity is widely recognised as important for assessing fish habitat quality, but our understanding of the importance of soft habitat microstructure for temperate marine fishes is less developed. We used best-subsets modelling of underwater surveys in sponge, soft coral, and macroalgae mesohabitats within a temperate estuary to assess what measures of soft habitat structure best predicted differences in wrasse (family: Labridae) fish community composition. We found that significant differences in the labrid fish community among and within mesohabitat types were best explained by a combination of percent canopy cover and soft canopy height, with increased canopy height being correlated with increased fish abundance and species richness. Sponge and macroalgae mesohabitats emerged as particularly important, but vulnerable habitats for a diversity of fishes unique to these mesohabitat types. Ultimately, mesohabitats with high percent canopy cover and height appear to be particularly valuable for supporting estuarine fish communities. Due to this importance, and the potential for decadal-scale recovery times within sponge canopies, we suggest patches with high-quality canopy structure warrant special protection from local threats, such as anchor and fishing damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MJ, Millar RB (2004) Spatial variation and effects of habitat on temperate reef fish assemblages in northeastern New Zealand. J Exp Mar Bio Ecol 305:191–221. doi:10.1016/j.jembe.2003.12.011

    Article  Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA + for PRIMER: guide to software and statistical methods. PRIMER-E Ltd, Plymouth

    Google Scholar 

  • Ayling AL (1983) Growth and regeneration rates in thinly encrusting Demospongiae from temperate waters. Biol Bull 165:343–352. doi:10.2307/1541200

    Article  Google Scholar 

  • Bell JJ (2008) The functional roles of marine sponges. Estuar Coast Shelf Sci 79:341–353. doi:10.1016/j.ecss.2008.05.002

    Article  Google Scholar 

  • Boury-Esnault N, Rutzler K (1997) Thesaurus of sponge morphology. Smithsonian Instituion Press, Washington, D. C

    Google Scholar 

  • Burnham KP, Anderson MJ (2002) Model selection and multi-model inference: a practical information-theoretic approach, 2nd edn. Springer, New York, USA

    Google Scholar 

  • Cárdenas CA, Davy SK, Bell JJ (2016) Influence of canopy-forming algae on temperate sponge assemblages. J Mar Biol Assoc United Kingdom 96:351–362. doi:10.1017/S0025315414002057

    Article  Google Scholar 

  • Chiappone M, Dienes H, Swanson DW, Miller SL (2005) Impacts of lost fishing gear on coral reef sessile invertebrates in the Florida Keys National Marine Sanctuary. Biol Conserv 121:221–230. doi:10.1016/j.biocon.2004.04.023

    Article  Google Scholar 

  • Choat JH, Ayling AM (1987) The relationship between habitat structure and fish faunas on New Zealand reefs. 110:257–284. doi:10.1016/0022-0981(87)90005-0

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual. PRIMER-E, Plymouth

  • Coleman MA, Kelaher BP, Steinberg PD, Millar AJK (2008) Absence of a large brown macroalga on urbanized rocky reefs around Sydney, Australia, and evidence for historical decline. J Phycol 44:897–901. doi:10.1111/j.1529-8817.2008.00541.x

    Article  Google Scholar 

  • Curley BG, Kingsford MJ, Gillanders BM (2002) Spatial and habitat-related patterns of temperate reef assemblages: implications for the design of Marine Protected Areas. Mar Freshw Res 53:1197–1210

    Article  Google Scholar 

  • Davis TR, Harasti D, Smith SDA (2015a) Developing a habitat classification typology for subtidal habitats in a temperate estuary in New South Wales, Australia

  • Davis TR, Harasti D, Smith SDA (2015b) Extension of Dendronephthya australis soft corals in tidal current flows. Mar Biol 162:2155–2159. doi:10.1007/s00227-015-2732-7

  • Demers MCA, Davis AR, Knott NA (2013) A comparison of the impact of “seagrass-friendly” boat mooring systems on Posidonia australis. Mar Environ Res 83:54–62. doi:10.1016/j.marenvres.2012.10.010

    Article  CAS  Google Scholar 

  • Ettinger-Epstein P, Kingsford MJ (2008) Effects of the El Nino southern oscillation on Turbo torquatus (Gastropoda) and their kelp habitat. Austral Ecol 33:594–606. doi:10.1111/j.1442-9993.2007.01824.x

    Article  Google Scholar 

  • Freese L, Auster PJ, Heifetz J, Wing BL (1999) Effects of trawling on seafloor habitat and associated invertebrate taxa in the Gulf of Alaska. Mar Ecol Prog Ser 182:119–126. doi:10.3354/meps182119

    Article  Google Scholar 

  • Fulton CJ, Bellwood DR (2002) Patterns of foraging in labrid fishes. Mar Ecol Prog Ser 226:135–142

    Article  Google Scholar 

  • Fulton CJ, Depczynski M, Holmes TH, Noble MM, Radford B, Wernberg T, Wilson SK (2014) Sea temperature shapes seasonal fluctuations in seaweed biomass within the Ningaloo coral reef ecosystem. Limnol Oceanogr 59:156–166. doi:10.4319/lo.2014.59.01.0156

    Article  Google Scholar 

  • Fulton CJ, Noble MN, Radford B, Gallen C, Harasti D (2016) Microhabitat selectivity underpins regional indicators of fish abundance and replenishment. Ecol Indic 70:222–231. doi:10.1016/j.ecolind.2016.06.032

    Article  Google Scholar 

  • Gillanders BM, Kingsford MJ (1998) Influence of habitat on abundance and size structure of a large temperate-reef fish, Achoerodus viridis (Pisces: Labridae). 132:503–514. doi:10.1007/s002270050416

  • Graham NAJ, Nash KL (2013) The importance of structural complexity in coral reef ecosystems. Coral Reefs 32:315–326. doi:10.1007/s00338-012-0984-y

    Article  Google Scholar 

  • Gratwicke B, Speight MR (2005) The relationship between fish species richness, abundance and habitat complexity in a range of shallow tropical marine habitats. J Fish Biol 66:650–667. doi:10.1111/j.1095-8649.2005.00629.x

    Article  Google Scholar 

  • Harasti D (2016) Declining seahorse populations linked to loss of essential marine habitats. Mar Ecol Prog Ser 546:173–181. doi:10.3354/meps11619

    Article  Google Scholar 

  • Harasti D, Martin-Smith K, Gladstone W (2014) Ontogenetic and sex-based differences in habitat preferences and site fidelity of White’s seahorse Hippocampus whitei. J Fish Biol 85:1413–1428. doi:10.1111/jfb.12492

    Article  CAS  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science (80-) 131:1292–1297. doi:10.1126/science.131.3409.1292

    Article  CAS  Google Scholar 

  • Holbrook SJ, Carr MH, Schmitt RJ, Coyer JA (1990a) Effect of giant kelp on local abundance of reef fishes: the importance of ontogenetic resource requirements. Bull Mar Sci 47:104–114

  • Holbrook SJ, Schmitt RJ, Ambrose RF (1990b) Biogenic habitat structure and characteristics of temperate reef fish assemblages. Aust J Ecol 15:489–503

  • Horinouchi M (2007) Review of the effects of within-patch scale structural complexity on seagrass fishes. J Exp Mar Bio Ecol 350:111–129. doi:10.1016/j.jembe.2007.06.015

    Article  Google Scholar 

  • Hortal J, Triantis KA, Meiri S, Thebault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. Am Nat 174:E205–E217. doi:10.1086/645085

    Article  Google Scholar 

  • Kerry JT, Bellwood DR (2015a) Do tabular corals constitute keystone structures for fishes on coral reefs? Coral Reefs 34:41–50. doi:10.1007/s00338-014-1232-4

  • Kerry JT, Bellwood DR (2015b) The functional role of tabular structures for large reef fishes: avoiding predators or solar irradiance? Coral Reefs 693–702. doi:10.1007/s00338-015-1275-1

  • Kramer MJ, Bellwood O, Fulton CJ, Bellwood DR (2015) Refining the invertivore: diversity and specialisation in fish predation on coral reef crustaceans. Mar Biol 162:1779–1786. doi:10.1007/s00227-015-2710-0

    Article  CAS  Google Scholar 

  • Kulbicki M, Guillemot N, Amand M (2005) A general approach to length-weight relationships for New Caledonian lagoon fishes. Cybium 29:235–252.

    Google Scholar 

  • Kutti T, Fosså J, Bergstad O (2015) Influence of structurally complex benthic habitats on fish distribution. Mar Ecol Prog Ser 520:175–190. doi:10.3354/meps11047

    Article  Google Scholar 

  • La Mesa G, Molinari A, Gambaccini S, Tunesi L (2011) Spatial pattern of coastal fish assemblages in different habitats in North-western Mediterranean. Mar Ecol 32:104–114. doi:10.1111/j.1439-0485.2010.00404.x

    Article  Google Scholar 

  • Larkum AWD (1986) A Study of growth and primary production in Ecklonia radiata (C. Ag.) J. Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales. J Exp Mar Bio Ecol 96:177–190

    Article  Google Scholar 

  • Lecchini D, Galzin R (2005) Spatial repartition and ontogenetic shifts in habitat use by coral reef fishes (Moorea, French Polynesia). 147:47–58. doi:10.1007/s00227-004-1543-z

  • Leys SP, Lauzon NRJ (1998) Hexactinellid sponge ecology: Growth rates and seasonality in deep water sponges. J Exp Mar Bio Ecol 230:111–129. doi:10.1016/S0022-0981(98)00088-4

    Article  Google Scholar 

  • Lim I, Wilson SK, Holmes TH, Noble MM, Fulton CJ (2016) Specialisation within a shifting habitat mosaic underpins the seasonal abundance of a tropical fish. Ecosphere 7:1–32. doi:10.1002/ecs2.1212

    Article  Google Scholar 

  • Mabin C, Gribben P, Fischer A, Wright J (2013) Variation in the morphology, reproduction and development of the habitat-forming kelp Ecklonia radiata with changing temperature and nutrients. Mar Ecol Prog Ser 483:117–131. doi:10.3354/meps10261

    Article  Google Scholar 

  • Malcolm HA, Smith SDA (2010) Objective selection of surrogate families to describe reef fish assemblages in a subtropical marine park. Biodivers Conserv 19:3611–3618. doi:10.1007/s10531-010-9913-y

    Article  Google Scholar 

  • Morton JK, Gladstone W (2011) Spatial, temporal and ontogenetic variation in the association of fishes (family Labridae) with rocky-reef habitats. Mar Freshw Res 62:870–884. doi:10.1071/MF10315

    Article  Google Scholar 

  • Morton JK, Platell ME, Gladstone W (2008) Differences in feeding ecology among three co-occurring species of wrasse (Teleostei: Labridae) on rocky reefs of temperate Australia. Mar Biol 154:577–592. doi:10.1007/s00227-008-0951-x

    Article  Google Scholar 

  • Mulder CPH, Bazeley-White E, Dimitrakopoulos PG, Hector A, Scherer-Lorenzen M, Schmid B (2004) Species evenness and productivity in experimental plant communities. Oikos 107:50–63. doi:10.1111/j.0030-1299.2004.13110.x

    Article  Google Scholar 

  • Munday PL (2004) Habitat loss, resource specialization, and extinction on coral reefs. Glob Chang Biol 10:1642–1647. doi:10.1111/j.1365-2486.2004.00839.x

    Article  Google Scholar 

  • Munday PL, Jones GP, Caley MJ (1997) Habitat specialisation and the distribution and abundance of coral-dwelling gobies. Mar Ecol Prog Ser 152:227–239. doi:10.3354/meps152227

    Article  Google Scholar 

  • Nagelkerken I, Roberts CM, Van der Velde G, Gorissen MW, Meijer GJ, Van’t Hof T, Den Hartog C (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. 244:299–305

  • Nash KL, Graham NAJ, Wilson SK, Bellwood DR (2012) Cross-scale Habitat structure drives fish body size distributions on coral reefs. Ecosystems 16:478–490. doi:10.1007/s10021-012-9625-0

    Article  Google Scholar 

  • Noble MM, van Laake G, Berumen M, Fulton CJ (2013) Community change within a Caribbean coral reef marine protected area following two decades of local management. PLoS One 8:e54069

    Article  CAS  Google Scholar 

  • Perez-Matus A, Shima JS (2010) Disentangling the effects of macroalgae on the abundance of temperate reef fishes. J Exp Mar Bio Ecol 388:1–10. doi:10.1016/j.jembe.2010.03.013

    Article  Google Scholar 

  • Poore AGB, Watson MJ, de Nys R, Lowry JK, Steinberg PD (2000) Patterns of host use among alga- and sponge- associated amphipods. Mar Ecol Prog Ser 208:183–196. doi:10.3354/meps208183

    Article  Google Scholar 

  • Poulos DE, Harasti D, Gallen C, Booth DJ (2013) Biodiversity value of a geographically restricted soft coral species within a temperate estuary. Aquat Conserv Mar Freshw Ecosyst 23:838–849. doi:10.1002/aqc.2362

    Article  Google Scholar 

  • Poulos DE, Gallen C, Davis T, Booth DJ, Harasti D (2015) Distribution and spatial modelling of a soft coral habitat in the Port Stephens—Great Lakes Marine Park: implications for management

  • Pratchett MS, Coker DJ, Jones GP, Munday PL (2012) Specialization in habitat use by coral reef damselfishes and their susceptibility to habitat loss. Ecol Evol 2:2168–2180. doi:10.1002/ece3.321

    Article  Google Scholar 

  • Shepard S, Edgar GJ (2013) Ecology of Australian temperate reefs: the unique south. CSIRO Publishing, Collingwood

    Google Scholar 

  • Syms C, Jones GP (2000) Disturbance, habitat structure, and the dynamics of a coral-reef fish community. Ecology 81:2714–2729

    Article  Google Scholar 

  • Taylor RB (1998) Density, biomass and productivity of animals in four subtidal rocky reef habitats: the importance of small mobile invertebrates. Mar Ecol Prog Ser 172:37–51. doi:10.3354/meps172037

    Article  Google Scholar 

  • Tuya F, Wernberg T, Thomsen MS (2009) Habitat structure affect abundances of labrid fishes across temperate reefs in south-western Australia. Environ Biol Fishes 86:311–319. doi:10.1007/s10641-009-9520-5

    Article  Google Scholar 

  • Vergés A, Steinberg PD, Hay ME, Poore AGB, Campbell AH, Ballesteros E, Heck Jr KL, Booth DJ, Coleman MA, Feary DA, Figueira W, Langlois T, Marzinelli EM, Mizerek T, Mumby PJ, Nakamura Y, Roughan M, van Sebille E, Sen Gupta A, Smale DA, Tomas F, Wernberg T, Wilson SK (2014) The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proc R Soc B 281:1–10. doi:10.1098/rspb.2014.0846

    Article  Google Scholar 

  • Wellenreuther M, Syms C, Clements KD (2008) Consistent spatial patterns across biogeographic gradients in temperate reef fishes. Ecography (Cop) 31:84–94. doi:10.1111/j.2007.0906-7590.05270.x

    Article  Google Scholar 

  • Wernberg T, Bennett S, Babcock RC, de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont F, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, Saunders BJ, Smale DA, Thomsen MS, Tuckett CA, Tuya F, Vanderklift MA, Wilson SK (2016a) Climate-driven regime shift of a temperate marine ecosystem. Science 353:169–172. doi:10.1126/science.aad8745

  • Wernberg T, de Bettignies T, Joy BA, Finnegan PM (2016b) Physiological responses of habitat-forming seaweeds to increasing temperatures. Limnol Oceanogr. doi:10.1002/lno.10362

  • Wilson SK, Graham NAJ, Pratchett MS, Jones GP, Polunin NVC (2006) Multiple disturbances and the global degradation of coral reefs: Are reef fishes at risk or resilient? Glob Chang Biol 12:2220–2234. doi:10.1111/j.1365-2486.2006.01252.x

    Article  Google Scholar 

  • Wilson SK, Graham NAJ, Polunin NVC (2007) Appraisal of visual assessments of habitat complexity and benthic composition on coral reefs. Mar Biol 151:1069–1076. doi:10.1007/s00227-006-0538-3

    Article  Google Scholar 

  • Wilson SK, Burgess SC, Cheal AJ, Emslie M, Fisher R, Miller I, Polunin NVC, Sweatman HPA (2008) Habitat utilization by coral reef fish: implications for specialists vs. generalists in a changing environment. J Anim Ecol 77:220–228. doi:10.1111/j.1365-2656.2007.01341.x

    Article  Google Scholar 

  • Wilson SK, Depczynski M, Fisher R, Holmes TH, O’Leary RA, Tinkler P (2010) Habitat associations of juvenile fish at Ningaloo Reef, Western Australia: the importance of coral and algae. PLoS One 5:e15185. doi:10.1371/journal.pone.0015185

    Article  Google Scholar 

  • Wilson SK, Fulton CJ, Depczynski M, Holmes TH, Noble MM, Radford B, Tinkler P (2014) Seasonal changes in habitat structure underpin shifts in macroalgae-associated tropical fish communities. Mar Biol 161:2597–2607. doi:10.1007/s00227-014-2531-6

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martial Depczynski and Shaun Wilson for helpful discussions, two anonymous peer reviewers for constructive feedback on an earlier draft of the manuscript, and the Australian National University and New South Wales Department of Primary Industries for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua R. van Lier.

Ethics declarations

This work was conducted with the approval of NSW Department of Primary Industries Animal Care and Ethics Committee permit 12/20.

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Responsible Editor: G. H. Engelhard.

Reviewed by J. Morton and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1015 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Lier, J.R., Harasti, D., Laird, R. et al. Importance of soft canopy structure for labrid fish communities in estuarine mesohabitats. Mar Biol 164, 45 (2017). https://doi.org/10.1007/s00227-017-3068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-017-3068-2

Keywords

Navigation