Advertisement

Marine Biology

, 164:28 | Cite as

A global invader or a complex of regionally distributed species? Clarifying the status of an invasive calcareous tubeworm Hydroides dianthus (Verrill, 1873) (Polychaeta: Serpulidae) using DNA barcoding

  • Yanan SunEmail author
  • Eunice Wong
  • Erica Keppel
  • Jane E. Williamson
  • Elena K. Kupriyanova
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species

Abstract

Clarifying taxonomic status is essential to understanding invasion source and the spread of invasive species. Here we used barcoding gene cytochrome c oxidase subunit I to explore the issue in a common fouling invasive species Hydroides dianthus. The species was originally described from off New England, USA, reported along the east coast of North America down to Florida and the Caribbean region, introduced to China, Europe, Japan and West Africa via anthropogenic transport and is now collected in Brazil for the first time. Unlike most congeners, H. dianthus has tolerance for a wide temperature range, being distributed from temperate to subtropical waters. Our results based on 112 specimens collected from 17 localities worldwide confirmed that H. dianthus sensu stricto is indeed a global invader. Observed higher haplotypes diversity in the Mediterranean seems to contradict the currently accepted native range of H. dianthus sensu stricto in the USA. The study also revealed the existence of a potential cryptic species H. cf. dianthus with a genetic distance of 5.6%. The cryptic lineage found in Texas was evidently introduced to the Black Sea only recently. Given that both lineages within H. dianthus are invasive, a greater emphasis on adequate monitoring and management of the routes responsible for introductions of this species is needed.

Keywords

Polychaete Invasion History Cryptic Lineage Interspecific Distance Species Distribution Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The study was funded by Australian Biological Resource Survey (ABRS) Grant RF213-19 to EKK. We thank the Department of Biological Sciences at Macquarie University for an International Macquarie University Research Excellence Scholarship (iMQRES) awarded to YS. We are grateful to João Miguel de Matos Nogueira, Orlemir Carrerette, Felipe Ramon De Chiara and Carlos Diego from the University of São Paulo who helped with our sampling in Brazil; and to Nicholas Patocka and Zhijun Dong who kindly share their observation on Hydroides dianthus communities in the field. We also thank Anja Schulze, Aylin Ulman, Eijiroh Nishi, Elena Lisitskaya, James Carlton, Joachim Langeneck, Melih Ertan Çinar and Xuwen Wu who collected samples around the world and generously donated them for this study.

Funding

This study was funded by Australian Biological Resource Survey (ABRS) Grant (Grant No. RF213-19).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

References

  1. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  3. Barroso R, Klautau M, Solé-Cava AM, Paiva PC (2010) Eurythoe complanata (Polychaeta: Amphinomidae), the ‘cosmopolitan’ fireworm, consists of at least three cryptic species. Mar Biol 157:69–80. doi: 10.1007/s00227-009-1296-9 CrossRefGoogle Scholar
  4. Bastida-Zavala JR, Salazar-Vallejo SI (2000) Serpúlidos (Polychaeta: Serpulidae) del Caribe noroccidental: Hydroides y Serpula. Rev Biol Trop 48(4):841–858Google Scholar
  5. Bastida-Zavala JR, ten Hove HA (2002) Revision of Hydroides Gunnerus, 1768 (Polychaeta: Serpulidae) from the western Atlantic region. Beaufortia 52:103–178Google Scholar
  6. Bastida-Zavala JR, ten Hove HA (2003) Revision of Hydroides Gunnerus, 1768 (Polychaeta: Serpulidae) from the eastern Pacific Region and Hawaii. Beaufortia 53:67–110Google Scholar
  7. Bastrop R, Jürss K, Sturmbauer C (1998) Cryptic species in a marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15(2):97–103CrossRefGoogle Scholar
  8. Boltachova NA, Lisitskaya EV, Lebedovskaya MV (2011) New species Hydroides dianthus (Verrill, 1873) (Polychaeta: Serpulidae) from the coastal waters of Crimea (the Black Sea). Mar Ecol J 10(2):34–38 [In Russian] Google Scholar
  9. Breton G (2014) Alien or invasive species in the ports of Le Havre, Antifer and Rouen (Normandy, France). Hydroécol Appl 18:23–65CrossRefGoogle Scholar
  10. Carr CM, Hardy SM, Brown TM, Macdonald TA, Hebert PDN (2011) A Tri-oceanic perspective: DNA barcoding reveals geographic structure and cryptic diversity in Canadian polychaetes. PLoS ONE 6:e22232CrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 4:331–346Google Scholar
  12. Dauvin JC, Dewarumez JM, Gentil F (2003) Liste actualisée des espèces d’Annélides Polychètes présentes en Manche. Cah Biol Mar 44(1):67–95Google Scholar
  13. de Lamarck JBM (1819) Histoire naturelle des animaux sans vertèbre, vol 6. De l'Imprimerie de A. BELIN, Paris, p 232Google Scholar
  14. Dennis AB, Hellberg ME (2010) Ecological partitioning among parapatric cryptic species. Mol Ecol 19:3206–3225CrossRefGoogle Scholar
  15. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449CrossRefGoogle Scholar
  16. Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11–37CrossRefGoogle Scholar
  17. Dürr S, Watson DI (2009) Biofouling and antifouling in aquaculture. In: Dürr S, Thomason JC (eds) Biofouling. Chapter 19. Wiley-Blackwell, West Sussex, pp 267–287CrossRefGoogle Scholar
  18. Eno CN, Clark RA, Sanderson WG (1997) Non-native marine species in British waters: a review and directory. Joint Nature Conservation Committee, PeterboroughGoogle Scholar
  19. Fofonoff PW, Ruiz GM, Steves B, Carlton JT (2016). NEMESIS National Exotic Marine and Estuarine Species Information System. http://invasions.si.edu/nemesis/. Accessed 26 May 2016
  20. Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Annu Rev Mar Sci 2:367–393CrossRefGoogle Scholar
  21. Gomoiu MT, Alexandrov B, Shadrin N, Zaitsev Y (2002) The Black Sea—a recipient, donor and transit area for alien species. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe, Distribution, Impacts and Management. Kluwer Academic Publishers, Dordrecht, pp 341–350CrossRefGoogle Scholar
  22. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  23. Haswell WA (1883) On some new Australian tubicolous annelids. Proc Linn Soc NSW 7:633–638Google Scholar
  24. Hedgpeth JW (1950) Annotated list of certain marine invertebrates found on Texas jetties. In: Whitten HL, Rosene HF, Hedgpeth JW (eds) The invertebrate fauna of Texas coast jetties; a preliminary survey. Publications of the Institute of Marine Science, University of Texas, Texas, pp 53–87Google Scholar
  25. Hirata Y, Akashige S (2004) The present situation and problems of oyster culture in Hiroshima Bay. Bull Fish Res Agency 1:5–12Google Scholar
  26. Hoos PM, Miller AW, Ruiz GM, Vrijenhoek RC, Geller JB (2010) Genetic and historical evidence disagree on likely sources of the Atlantic amethyst gem clam Gemma gemma (Totten, 1834) in California. Divers Distrib 16:582–592CrossRefGoogle Scholar
  27. Katsanevakis S, Wallentinus I, Zenetos A, Leppäkoski E, Çinar ME, Oztürk B, Grabowski M, Golani D, Cardoso AC (2014) Impacts of invasive alien marine species on ecosystem services and biodiversity: a pan-European review. Aquat Invasions 9(4):391–423CrossRefGoogle Scholar
  28. Kupriyanova EK, Nishi E, ten Hove HA, Rzhavsky AV (2001) A review of life history patterns in Serpulimorph polychaetes: ecological and evolutionary perspectives. Oceanogr Mar Biol 39:1–101Google Scholar
  29. Kupriyanova EK, Hutchings P, Wong E (2016) A fully-illustrated web-based guide to distinguish native and introduced polychaetes of Australia. Manag Biol Invasion 7(3):305–312CrossRefGoogle Scholar
  30. Kvist S (2014) Does a global DNA barcoding gap exist in Annelida? MDN. doi: 10.3109/19401736.2014.984166 Google Scholar
  31. Lejeusne C, Saunier A, Petit N, Beguer M, Otani M, Carlton JT, Rico C, Green AJ (2014) High genetic diversity and absence of founder effects in a worldwide aquatic invader. Sci Rep 4:1–9CrossRefGoogle Scholar
  32. Lewis JA, Watson C, ten Hove HA (2006) Establishment of the Caribbean serpulid tubeworm Hydroides sanctaecrucis Kroyer [in] Mörch, 1863, in northern Australia. Biol Invasions 8:665–671CrossRefGoogle Scholar
  33. Link H, Nishi E, Tanaka K, Bastida-Zavala R, Kupriyanova EK, Yamakita T (2009) Hydroides dianthus (Polychaeta: Serpulidae), and alien species introduced into Tokyo Bay, Japan. Mar Biodivers Rec 2:1–5CrossRefGoogle Scholar
  34. Lobo J, Costa PM, Teixeira MAL, Ferreira MSG, Costa MH, Costa FO (2013) Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol 13:34. doi: 10.1186/1472-6785-13-34 CrossRefGoogle Scholar
  35. Miller LP, Harley CDG, Denny MW (2009) The role of temperature and desiccation stress in limiting the local-scale distribution of the owl limpet, Lottia gigantean. Funct Ecol 13:756–767CrossRefGoogle Scholar
  36. Minchin D, Cook E, Clark P (2013) Alien species in British brackish and marine waters. Aquat Invasions 8(1):3–19CrossRefGoogle Scholar
  37. Mörch OAL (1863) Revisio critica Serpulidarum. Et bidrag til rørormenes naturhistorie. Naturh Tidsskr 3(1):347–470Google Scholar
  38. Nishi E, Tanaka K (2008) Serpulid polychaete specimens deposited in Seto Marine Biological Laboratory, Kyoto University, Seto, Wakayama, Japan. Nanki-seibutsu 50:155–157 [in Japanese] Google Scholar
  39. Nygren A, Pleijel F (2010) From one to ten in a single stroke—resolving the European Eumida sanguinea (Phyllodocidae, Annelida) species complex. Mol Phylogenet Evol 58:132–141CrossRefGoogle Scholar
  40. Nylander JAA (2004) MrModeltest v2.2. program distributed by the author. Uppsala University, Evolutionary Biology Centre, UppsalaGoogle Scholar
  41. Okuda S (1934) Some tubicolous annelids from Hokkaido. J Fac Sci Hokkaido Univ (Ser 6), Zool 3:233–246Google Scholar
  42. Oldale RN, Valentine PC, Cronin TM, Spiker EC, Blackwelder BW, Belknap DF, Wehmiller JF, Szabo BJ (1982) Stratigraphy, structure, absolute age, and paleontology of the upper Pleistocene deposits at Sankaty Head, Nantucket Island, Massachusetts. Geology 10:246–252CrossRefGoogle Scholar
  43. Otani M, Yamanishi R (2010) Distribution of the alien species Hydroides dianthus (Verrill, 1873) (Polychaeta: Serpulidae) in Osaka Bay, Japan, with comments on the factors limiting its invasion. Plankton Benthos Res 5(2):62–68CrossRefGoogle Scholar
  44. Ozturk B (2002) The Marmara Sea, a link between the Mediterranean and the Black Sea. In: Leppäkoski E, Gollasch S, Olenin S (eds) Invasive aquatic species of Europe, distribution, impacts and management. Kluwer Academic Publishers, Dordrecht, pp 337–340CrossRefGoogle Scholar
  45. Pettengill JB, Wendt DE, Schug MD, Hadfield MG (2007) Biofouling likely serves as a major mode of dispersal for the polychaete tubeworm Hydroides elegans as inferred from microsatellite loci. Biofouling 23(3):161–169. doi: 10.1080/08927010701218952 CrossRefGoogle Scholar
  46. Qiu J, Qian P (1997) Combined effects of salinity, temperature and food on early development of the polychaete Hydroides elegans. Mar Ecol Prog Ser 152:79–88CrossRefGoogle Scholar
  47. Rioja E (1941) Estudios anelidológicos, 2. Observaciones de varias especies del género Hydroides Gunnerus (sensu Fauvel) de las costas mexicanas del Pacífico. An Inst Biol Univ Nac Auton Mex Ser 12:161–175Google Scholar
  48. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464CrossRefGoogle Scholar
  49. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. doi: 10.1093/bioinformatics/btg180 CrossRefGoogle Scholar
  50. Sciuto F, Rosso A, Sanfilippo R, Maniscalco R (2015) New faunistic data on the Pleistocene environmental evolution of the south-western edge of the Hyblean Plateau (SE Sicily). Carnets Géol Noteb Geol 15(5):41–57CrossRefGoogle Scholar
  51. Seebens H, Gastner MT, Blasius B (2013) The risk of marine bioinvasion caused by global shipping. Ecol Lett 16:782–790CrossRefGoogle Scholar
  52. Streftaris N, Zenetos A, Papathanassiou E (2005) Globalisation in marine ecosystems: the story of non-indigenous marine species across European Seas. Oceangr Mar Biol 43:419–453Google Scholar
  53. Sun R, Yang D (2000) Study on Hydroides (Polychaeta: Serpulidae) from waters off China. I. Stud Mar Sin 42:116–135Google Scholar
  54. Sun R, Yang D (2015) Fauna Sinica of China, Invertebrata Polychaeta (III): Sabellida. Science Press, BeijingGoogle Scholar
  55. Sun Y, Kupriyanova EK, Qiu JW (2012) CO1 barcoding of Hydroides: a road from impossible to difficult. Invertebr Syst 26:539–547CrossRefGoogle Scholar
  56. Sun Y, Wong E, ten Hove HA, Hutchings PA, Williamson JE, Kupriyanova EK (2015) Revision of the genus Hydroides (Annelida: Serpulidae) from Australia. Zootaxa 4009(1):1–99CrossRefGoogle Scholar
  57. Sun Y, Wong E, Tovar-Hernández MA, Williamson JE, Kupriyanova EK (2016) Is Hydroides brachyacantha (Serpulidae: Annelida) a widespread species? Invertebr Syst 30(1):41–59CrossRefGoogle Scholar
  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefGoogle Scholar
  59. Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. Cladogram estimation. Genetics 132:619–633Google Scholar
  60. ten Hove HA, Wolf PS (1984) Chapter 55. Family Serpulidae Johnston, 1865. In: Uebelacker JM, Johnson PG (eds) Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Final report to the minerals management service, Contract 14-12-001-29091. Barry A Vittor & Ass Inc Mobile, Alabama, pp 1–34Google Scholar
  61. Trott TJ (2004) Cobscook Bay inventory: a historical checklist of marine invertebrates spanning 162 years. Northeast Nat 11:261–324CrossRefGoogle Scholar
  62. Verrill AE (1873) Results of the recent dredging expeditions on the coast of New England. No. 3. Am J Sci Arts 6:435–441CrossRefGoogle Scholar
  63. Wang J, Huang Z (1993) Fouling polychaetes of Hong Kong and adjacent waters. Asian Mar Biol 10:1–12Google Scholar
  64. Zenetos A, Gofas S, Verlaque M, Çinar ME, Garcia Raso JE et al (2010) Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterr Mar Sci 11(2):318–493CrossRefGoogle Scholar
  65. Zhan A, Darling JA, Bock DG, Lacoursière-Roussel A, Maclsaac HJ, Cristescu ME (2012) Complex genetic patterns in closely related colonizing invasive species. Ecol Evol 2(7):1331–1346CrossRefGoogle Scholar
  66. Zibrowius H (1971) Les espèces Méditerranéennes du genre Hydroides (Polychaeta Serpulidae). Remarques sur le prétendu polymorphisme de Hydroides uncinata. Téthys 2:691–746Google Scholar
  67. Zibrowius H (1973) Remarques sur trois espčces de Serpulidae acclimatées en Méditerranée: Hydroides dianthus (Verrill, 1873), Hydroides dirampha Mörch, 1863, et Hydroides elegans (Haswell, 1883). Rapport de la Commission Internationale de la Mer Méditerranée 21:683–686Google Scholar
  68. Zibrowius H (1978) Introduction du polychète Serpulidae japonais Hydroides ezoensis sur la côte atlantique française et remarques sur la propagation d’autre espèces de Serpulidae. Téthys 8:141–150Google Scholar
  69. Zibrowius H, Thorp CH (1989) A review of the alien serpulid and spirorbid polychaetes in the British Isles. Cah Biol Mar 30:271–285Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Yanan Sun
    • 1
    • 2
    Email author
  • Eunice Wong
    • 1
  • Erica Keppel
    • 3
    • 4
  • Jane E. Williamson
    • 2
  • Elena K. Kupriyanova
    • 1
    • 2
  1. 1.Australian Museum Research InstituteAustralian MuseumSydneyAustralia
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  3. 3.Marine Invasion Research LaboratorySmithsonian Environmental Research CenterEdgewaterUSA
  4. 4.Italian National Research Council (CNR)ISMAR Institute of Marine SciencesVeniceItaly

Personalised recommendations