Skip to main content

Advertisement

Log in

Comparative phototaxis of calanoid and harpacticoid copepods

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

A comparative taxonomic approach was used to examine copepod phototaxis. The sign of phototaxis, spectral responses, and intensity thresholds were examined for two species each from the orders Calanoida and Harpacticoida. Parvocalanus crassirostris is a typical calanoid, living in the water column, while P. pelagicus (Calanoida) is unusual in having a benthic association. Tisbe biminiensis is a typical harpacticoid, living on the benthos, while Euterpina acutifrons (Harpacticoida) is atypical, living in the water column. This is the first empirical study to include harpacticoid phototaxis. Tisbe and Pseudodiaptomous displayed negative phototaxis, and the sign of phototaxis for all species is likely to help them persist in their respective habitats. We suspect that the sign of phototaxis is either flexible or a prerequisite before changing habitats. Spectral sensitivity, however, is more complex and, we hypothesize, may be partially constrained by ancestry rather than fully adapted for the modern/current habitat. Pseudodiaptomous pelagicus, benthic calanoid, had a peak spectral response similar to other calanoids. E. acutifrons, pelagic harpacticoid, had a peak spectral response similar to light-adapted T. biminiensis. E. acutifrons exhibited positive or negative photoresponses dependent upon spectrum, a dual strategy unobserved in other copepods but potentially effective for maintaining vertical position. We suggest a Constrained Sensitivity Hypothesis where ancestral habitat may influence the extent and nature of modern responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida LR, Costa IS, Eskinazi-Sant’Anna EM (2012) Composition and abundance of zooplankton community of an impacted estuarine lagoon in Northeast Brazil. Braz J Biol 72:12–24

    Article  CAS  Google Scholar 

  • Alvarez Silva C, Gomez Aguirre S (2000) Update list of copepods (crustacea) of the coastal lagoon from Veracruz. Hidrobiologica (Iztapalapa). Iztapalapa 10:161–168

    Google Scholar 

  • Ara K (2001) Temporal variability and production of Euterpina acutifrons (Copepoda: Harpacticoida) in the Cananeia Lagoon estuarine system, Sao Paulo, Brazil. Hydrobiologia 453/454:177–187

    Article  Google Scholar 

  • Araújo-Castro CMV, Souza-Santos LP (2005) Are the diatoms Navicula sp. And Thalassiosira fluviatilis suitable to be fed to the benthic harpacticoid copepod Tisbe biminiensis? J Exp Mar Biol Ecol 327:58–69

    Article  Google Scholar 

  • Araújo-Castro CMV, Souza-Santos LP, Torreiro AGA, Garcia KS (2009) Sensitivity of the marine benthic copepod Tisbe biminiensis (copepoda, harpacticoida) to potassium dichromate and sediment particle size. Braz J Oceanogr 57:33–41

    Article  Google Scholar 

  • Bassim KM, Sammarco PW (2003) Effects of temperature and ammonium on larval development and survivorship in a scleractinian coral (Diploria strigosa). Mar Biol 142:241–252

    Article  CAS  Google Scholar 

  • Bowman TE (1972) Cithadius cyathurae a new genus and species of Tachidiidae (Copepoda: Harpacticoida) associated with the estuarine isopod Cvathura polita. Proc Biol Soc Wash 85:249–254

    Google Scholar 

  • Bradley CJ, Strickler JR, Buskey EJ, Lenz PH (2012) Swimming and escape behavior in two species of calanoid copepods from nauplius to adult. J Plankton Res 35:49–65

    Article  Google Scholar 

  • Brucet S, Boix D, López-Flores R, Badosa A, Quintana XD (2005) Ontogenic changes of amino acid composition in planktonic crustacean species. Mar Biol 148:131–139

    Article  CAS  Google Scholar 

  • Buffan-Dubau E, Castel J (1996) Diel and seasonal vertical distribution of meiobenthic copepods in muddy sediments of a eutrophic lagoon (fishponds of Arcachon Bay). Hydrobiologia 329:69–78

    Article  CAS  Google Scholar 

  • Buskey EJ, Baker KS, Smith RC, Swift E (1989) Photosensitivity of the oceanic copepods Pleuromamma gracilis and Pleuromamma xiphias and its relationship to light penetration and daytime depth distribution. Mar Ecol Prog Ser 55:207–216

    Article  Google Scholar 

  • Camus T, Zeng C (2012) Reprodictive performance, survival and development of nauplii and copepodites, sex ratio and adult life expectancy of the harpacticoid copepod, Euterpina acutifrons, fed different microalgal diets. Aquac Res 43:1159–1169

    Article  CAS  Google Scholar 

  • Chae J, Nishida S (2004) Swimming behaviour and photoresponses of then iridescent copepods, Sapphirina gastrica and Sapphirina opalina (Copepoda: Poecilostomatoida). J Mar Biol Assoc UK 84:727–731

    Article  Google Scholar 

  • Chang BS, Crandall KA, Carulli JP, Hartl DL (1995) Opsin phylogeny and evolution: a model for blue shifts in wavelength regulation. Mol Phylogenet Evol 4:31–43

    Article  CAS  Google Scholar 

  • Chertoprud ES, Frenkel SE, Novichkova AA, Vodop’yanov SS (2014) Harpacticoida (Copepoda) fauna and the taxocenes structure of brackish lagoons and estuaries of the Russian far east. Oceanology 54:739–751

    Article  Google Scholar 

  • Cohen JH, Forward RB (2002) Spectral sensitivity of vertically migrating marine copepods. Biol Bull 203:307–314

    Article  Google Scholar 

  • Cohen JH, Forward RB (2009) Zooplankton diel vertical migration—a review of proximate control. Oceanogr Mar Biol Annu Rev 47:77–110

    Article  Google Scholar 

  • Dahms HU (1986) Zur Biologie von Paramphiascella fulvofasciata (Copepoda, Harpacticoida). Helgoländer Meeresuntersuchungen 40:267–277

    Article  Google Scholar 

  • Forward RB (1977) Occurrence of a shadow response among brachyuran larvae. Mar Biol 39:331–341

    Article  Google Scholar 

  • Forward RB (1986) A reconsideration of the shadow response of a larval crustacean. Mar Behav Physiol 12:99–113

    Article  Google Scholar 

  • Forward RB (1988) Diel vertical migration: zooplankton photobiology and behaviour. Oceanogr Mar Biol Annu Rev 26:361–393

    Google Scholar 

  • Forward RB, Cronin TW, Stearns DE (1984) Control of diel vertical migration: photoresponses of a larval crustacean. Limnol Oceanogr 29:146–154

    Article  Google Scholar 

  • Hamasaki K, Sugimoto A, Sugizaki M, Murakami Y, Kitada S (2013) Ontogeny of sinking velocity, body density, and phototactic behaviour in larvae of the coconut crab Birgus latro: implications for larval dispersal and recruitment in the sea. J Exp Mar Biol Ecol 442:58–65

    Article  Google Scholar 

  • Hicks GR, Coull BC (1983) The ecology of marine meiobenthic harpacticoid copepods. Oceanogr Mar Biol Annu Rev 21:67–175

    Google Scholar 

  • Hoff F, Snell T (eds) (2008) Plankton culture manual, 6th edn. Florida Aqua Farms. Inc., Dade City

    Google Scholar 

  • Huys R, Boxshall GA (1991) Copepod evolution. The Ray Society, London

    Google Scholar 

  • Jacobs J (1961) Laboratory cultivation of the marine copepod Pseudodiaptomus coronatus Williams. Limnol Oceanogr 6:443–446

    Article  Google Scholar 

  • Jerlov NG (1976) Elservier oceanography series. In: Jerlov NG (ed) Marine optics, vol 14. Elsevier Scientific Pub. Co., New York

  • Johnson WH (1938) The effect of light on the vertical movements of Acartia clausi (Giesbrecht). Biol Bull 75:106–118

    Article  Google Scholar 

  • Johnson KB, Forward RB (2003) Larval photoresponses of the polyclad flatworm Maritigrella crozieri (Platyhelminthes, Polycladida) (Hyman). J Exp Mar Biol Ecol 282:103–112

    Article  Google Scholar 

  • Johnson KB, Rhyne AL (2015) Ontogenetic shift of spectral sensitivity in the larval phototaxis of two sympatric caridean shrimp, Lysmata wurdemanni and L. boggessi (Decapoda: Lysmatidae). Mar Biol 162:1265–1273

    Article  Google Scholar 

  • Knuckey RM, Semmens GL, Mayer RJ, Rimmer MA (2005) Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis: effect of algal species and feed concentration on copepod development. Aquaculture 249:339–351

    Article  Google Scholar 

  • Kotwicki L, Szymelfenig M, Fiers F, Graca B (2015) Diversity and environmental control of benthic harpacticoids of an offshore post-dredging pit in coastal waters of Puck Bay, Baltic Sea. Mar Biol Res 11:572–583

    Article  Google Scholar 

  • Langhans RW, Tibbitts TW (eds) (1997) Plant growth chamber handbook. North Central Regional Research Station, Ames

    Google Scholar 

  • Latz MI, Forward RB (1977) The effect of salinity upon phototaxis and geotaxis in a larval crustacean. Biol Bull 153:163–179

    Article  CAS  Google Scholar 

  • Liu JY, Wang CC, Chou LS (2016) Ontogenic change in phototaxis of the clam shrimp Eulimnadia braueriana ishikawa, 1895 (branchiopoda: spinicaudata). J Crustacean Biol 36:33–38

    Article  Google Scholar 

  • Long JD, Hay ME (2006) When intraspecific exceeds interspecific variance: effects of phytoplankton morphology and growth phase on copepod feeding and fitness. Limnol Oceanogr 51:988–996

    Article  Google Scholar 

  • Manor S, Polak O, Saidel WM, Goulet TL, Shashar N (2009) Light intensity mediated polarotaxis in Pontella karachiensis (Pontellidae, Copepoda). Vis Res 49:2371–2378

    Article  Google Scholar 

  • Martynova DM, Gordeeva A (2010) Light-dependent behavior of abundant zooplankton species in the White Sea. J Plankton Res 32:441–456

    Article  Google Scholar 

  • Mauchline J (ed) (1998) Advances in marine biology: the biology of calanoid copepods. Academic Press, London

    Google Scholar 

  • McCarthy DA, Forward RD, Young CM (2002) Ontogeny of phototaxis and geotaxis during larval development of the sabellariid polychaete Phragmatopoma lapidosa. Mar Ecol Prog Ser 241:215–220

    Article  Google Scholar 

  • McKinnon AD, Ayukai T (1996) Copepod egg production and food resources in Exmouth Gulf, Western Australia. Mar Freshw Res 47:595–603

    Article  CAS  Google Scholar 

  • Miller SE (1975) Environmental cues and the orientation and movement of Norrisia norrisii. Veliger 17:292–295

    Google Scholar 

  • Padua A, Lanna E, Zilberberg C, Cesar de Paival P, Klautau M (2013) Recruitment, habitat selection and larval photoresponse of Paraleucilla magna (Porifera, Calcarea) in Rio de Janeiro, Brazil. Mar Ecol 34:56–61

    Article  Google Scholar 

  • Schallek W (1943) The reaction of certain crustacea to direct and to diffuse light. Biol Bull 84:98–105

    Article  Google Scholar 

  • Schizas NV, Street GT, Coull BC, Chandler GT, Quattro JM (1999) Molecular population structure of the marine benthic copepod Microarthridion littorale along the southeastern and Gulf coasts of the USA. Mar Biol 135:399–405

    Article  CAS  Google Scholar 

  • Seifried S (2003) Phylogeny of Harpacticoida (Copepoda): revision of “Maxillipedasphalea” and Exanechentera. Cuvillier Verlag, Göttingen

    Google Scholar 

  • Service SK, Bell SS (1987) Density-influenced active dispersal of harpacticoid copepods. J Exp Mar Biol Ecol 114:49–62

    Article  Google Scholar 

  • Shichida Y, Matsuyama T (2009) Evolution of opsins and phototransduction. Philos Trans R Soc B 364:2881–2895

    Article  CAS  Google Scholar 

  • Souza-Santos LP, Pastor JM, Ferreira NG, Costa WM, Araújo-Castro C, Santos PJ (2006) Developing the harpacticoid copepod Tisbe biminiensis culture: testing for salinity tolerance, ration levels, presence of sediment and density dependent analyses. Aquac Res 37:1516–1523

    Article  Google Scholar 

  • Stearns DE, Forward RB (1984a) Photosensitivity of the calanoid copepod Acartia tonsa. Mar Biol 82:85–89

    Article  Google Scholar 

  • Stearns DE, Forward RB (1984b) Copepod photobehavior in a simulated natural light environment and its relation to nocturnal vertical migration. Mar Biol 82:91–100

    Article  Google Scholar 

  • Stearns DE, Sharp AA (1994) Sublethal effects of cupric ion activity on the phototaxis of three calanoid copepods. Hydrobiologia 292/293:505–511

    Article  CAS  Google Scholar 

  • Swift MC, Forward RB (1983) Photoresponses of the copepod Mesocyclops edax. J Plankton Res 5:407–415

    Article  Google Scholar 

  • Tang KW, Chen QC, Wong CK (1994) Diel vertical migration and gut pigment rhythm of Paracalanus parvus, P. crassirostris, Acartia erythraea and Eucalanus subcrassus (Copepoda, Calanoida) in Tolo Harbour, Hong Kong. Hydrobiologia 292/293:389–396

    Article  Google Scholar 

  • Teasdale M, Vopel K, Thistle D (2004) The timing of benthic copepod emergence. Limnol Oceanogr 49:884–889

    Article  Google Scholar 

  • Turner JT, Dagg MJ (1983) Vertical distributions of continental shelf zooplankton in stratified and isothermal waters. Biol Oceanogr 3:1–40

    Google Scholar 

  • Verheijen FJ (1960) The mechanisms of the trapping effect of artificial light sources upon animals. Archives Néerlandaises de Zoologie 13:1–107

    Article  Google Scholar 

  • Volkmann-Rocco B (1973) Tisbe biminiensis (Copepoda, Harpacticoida) a new species of the Gracilis group. Arch Oceanogr Limnol 18:71–90

    Google Scholar 

  • Vopel K, Thistle D (2011) Cue, not endogenous rhythm, control the dusk peak in water column entry by benthic copepods. Estuaries Coasts 34:1194–1204

    Article  Google Scholar 

  • Walter TC (1989) Review of the new world species of Pseudodiaptomus (Copepoda: Calanoida), with a key to the species. Bull Mar Sci 45:590–628

    Google Scholar 

  • Walters K (1988) Diel vertical migration of sediment-associated meiofauna in subtropical sand and seagrass habitats. J Exp Mar Biol Ecol 117:169–186

    Article  Google Scholar 

  • Wong CK, Chan ALC, Chen QC (1993) Planktonic copepods of Tolo Harbour, Hong Kong. Crustaceana 64:76–84

    Article  Google Scholar 

Download references

Acknowledgements

Much appreciation is expressed to Drs. John Trefry and Jamie Younkin for their advice in developing this project and comments on the manuscript. Thanks to Erik Stenn and AlgaGen LLC Culture Company for the culturing and supply of copepods and algae. Thanks to Dr. Andrew L. Rhyne for calling our attention to this collection of species and their habitat preferences. Appreciation is also expressed to L. Holly Sweat and Hannah Kolb for assistance with laboratory work and helpful suggestions. Thanks to Bill Battin for tool use and dark room support. We would especially like to thank anonymous reviewer 1 for their insightful critiques and suggestions which improved this manuscript. Some student stipend support was provided by Save Our Bay, Air and Canals/Waterways (SOBAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: X. Irigoien.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Johnson, K.B. Comparative phototaxis of calanoid and harpacticoid copepods. Mar Biol 164, 26 (2017). https://doi.org/10.1007/s00227-016-3054-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3054-0

Keywords

Navigation