Marine Biology

, 164:24 | Cite as

Anemonefish personalities influence the strength of mutualistic interactions with host sea anemones

  • Philip F. P. Schmiege
  • Cassidy C. D’Aloia
  • Peter M. Buston
Original paper


The anemone–anemonefish mutualism is one of the most iconic marine mutualisms. For decades, anemonefishes have been known to protect anemones from predators, while anemones provide safe havens for anemonefishes. More recently, it has been suggested that the number of anemonefish influences the survival, growth, and asexual reproduction of anemones. Here, we build on those findings, investigating the effect of four variables (fish number, fish biomass, fish shyness, and anemone colony area), on anemone growth and asexual reproduction. The interaction between Amphiprion percula and Entacmaea quadricolor was used as a tractable system in a controlled aquarium setting. Fish and anemones were monitored in 60 tanks for 18 months, and we recorded all variables at 6-month intervals. We performed single-measure analyses and found that fish shyness, defined as the time spent in the vicinity of the anemone, significantly predicts anemone growth over the entire experiment. Further, we performed repeated-measure analyses and found that both fish shyness and initial anemone colony area significantly predict anemone growth per time period. These data suggest that behavioral variation among individual fish may be an important driver of anemone growth. More generally, this study highlights the importance of behavioral traits in mediating the strength of interspecific interactions such as mutualisms and suggests that such effects should be accounted for when investigating the dynamics of interacting populations.


Asexual Reproduction Fish Biomass Fish Number Host Anemone Anemone Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was made possible by the Undergraduate Research Opportunities Program at Boston University and a start-up grant awarded to Peter Buston from the Trustees of Boston University. We thank John Majoris and Tina Barbasch for helpful feedback. In addition, we would like to thank Jeremiah Seymour, Alissa Rickborn, Arianna Medina, Diana Acosta, Derek Scolaro, Athbah Almuhairi, Cara Martone, Linda Wong, Jarrod Moore, and Andrew Lacqua for helping with various aspects of this project in the laboratory.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.


  1. Allen GR (1972) The Anemonefishes: their classification and biology, 2nd edn. TFH Publications, Neptune CityGoogle Scholar
  2. Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74:1175–1178. doi: 10.1111/j.1937-2817.2010.tb01236.x CrossRefGoogle Scholar
  3. Arvedlund M, Takemura A (2005) Long-term observation in situ of the anemonefish Amphiprion clarkii (Bennett) in association with a soft coral. Coral Reefs 24:698. doi: 10.1007/s00338-005-0007-3 CrossRefGoogle Scholar
  4. Bascompte J (2009) Mutualistic networks. Front Ecol Environ 7:429–436. doi: 10.1890/080026 CrossRefGoogle Scholar
  5. Bascompte J, Jordano P (2007) Plant-animal mutualistic networks: the architecture of biodiversity. Annu Rev Ecol Evol Syst 38:567–593. doi: 10.1146/annurev.ecolsys.38.091206.095818 CrossRefGoogle Scholar
  6. Bascompte J, Jordano P (2013) Mutualistic networks. Princeton University Press, Princeton. doi: 10.1515/9781400848720 CrossRefGoogle Scholar
  7. Bermudes M, Glencross B, Austen K, Hawkins W (2010) The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture 306:160–166. doi: 10.1016/j.aquaculture.2010.05.031 CrossRefGoogle Scholar
  8. Bolnick DI, Svanback R, Fordyce JA, Yang LH, Davis JM, Hulsey CD, Forister ML (2003) The ecology of individuals: incidence and implications of individual specialization. Am Nat 161:1–28. doi: 10.1086/343878 CrossRefGoogle Scholar
  9. Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA (2011) Why intraspecific trait variation matter in community ecology. Trends Ecol Evol 26:183–192. doi: 10.1016/j.tree.2011.01.009 CrossRefGoogle Scholar
  10. Bronstein JL (2009) Mutualism and symbiosis. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, pp 233–238. doi: 10.1515/9781400833023.233
  11. Brooks WR, Mariscal RN (1984) The acclimation of anemone fishes to sea anemones: protection by changes in the fish’s mucous coat. J Exp Mar Biol Ecol 81:277–285. doi: 10.1016/0022-0981(84)90155-2 CrossRefGoogle Scholar
  12. Buston PM (2002) Group structure of the clown anemonefish Amphiprion percula. Dissertation, Cornell UniversityGoogle Scholar
  13. Buston PM (2003a) Forcible eviction and prevention of recruitment in the clown anemonefish. Behav Ecol 14:576–582. doi: 10.1093/beheco/arg036 CrossRefGoogle Scholar
  14. Buston PM (2003b) Mortality is associated with social rank in the clown anemonefish. Mar Biol 143:811–815. doi: 10.1007/s00227-003-1106-8 CrossRefGoogle Scholar
  15. Buston PM (2003c) Social hierarchies: size and growth modification in clownfish. Nature 424:145–146. doi: 10.1038/424145a CrossRefGoogle Scholar
  16. Buston P (2004) Does the presence of non-breeders enhance the fitness of breeders? An experimental analysis in the clown anemonefish Amphiprion percula. Behav Ecol Sociobiol 57:23–31. doi: 10.1007/s00265-004-0833-2 CrossRefGoogle Scholar
  17. Buston PM, Elith J (2011) Determinants of reproductive success in dominant pairs of clownfish: a boosted regression tree analysis. J Anim Ecol 80:528–538. doi: 10.1111/j.1365-2656.2011.01803.x CrossRefGoogle Scholar
  18. Chadwick NE, Arvedlund M (2005) Abundance of giant sea anemones and patterns of association with anemonefish in the northern Red Sea. J Mar Biol Assoc UK 85:1287–1292. doi: 10.1017/s0025315405012440 CrossRefGoogle Scholar
  19. Chamberlain SA, Bronstein JL, Rudgers JA (2014) How context dependent are species interactions? Ecol Lett 17:881–890. doi: 10.1111/ele.12279 CrossRefGoogle Scholar
  20. Chase TJ, Pratchett MS, Walker SPW, Hoogenboom MO (2014) Small-scale environmental variation influences whether coral-dwelling fish promote or impede coral growth. Oecologia. doi: 10.1007/s00442-014-3065-9 Google Scholar
  21. Cleveland A, Verde EA, Lee RW (2011) Nutritional exchange in a tropical tripartite symbiosis: direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. Mar Biol 158:589–602. doi: 10.1007/s00227-010-1583-5 CrossRefGoogle Scholar
  22. Conrad JL, Weinersmith KL, Brodin T, Saltz JB, Sih A (2011) Behavioural syndromes in fishes: a review with implications for ecology and fisheries management. J Fish Biol 78:395–435. doi: 10.1111/j.1095-8649.2010.02874.x CrossRefGoogle Scholar
  23. Darwin CD (1859) On the origin of species by means of natural selection, or the preservation of favored races in the struggle for life. John Murray, LondonGoogle Scholar
  24. Dixon AK, Needham D, Al-Horani FA, Chadwick NE (2014) Microhabitat use and photoacclimation in the clownfish sea anemone Entacmaea quadricolor. J Mar Biol Assoc UK 94(3):473–480. doi: 10.1017/s0025315413001719 CrossRefGoogle Scholar
  25. Fautin DG (1986) Why do anemonefishes inhabit only some host actinians? Environ Biol Fishes 15(3):171–180. doi: 10.1007/bf00002992 CrossRefGoogle Scholar
  26. Fautin DG (1991) The anemonefish symbiosis: what is known and what is not. Symbiosis 10:23–46Google Scholar
  27. Fautin DG, Allen GR (1997) Anemone fishes and their host sea anemones. Western Australian Museum, PerthGoogle Scholar
  28. Fitt WK, Cook CB (2001) The effects of feeding or addition of dissolved inorganic nutrients in maintaining the symbiosis between dinoflagellates and a tropical marine cnidarian. Mar Biol 139:507–517. doi: 10.1007/s002270100598 CrossRefGoogle Scholar
  29. Frisch AJ, Rizzari JR, Munkres KP, Hobbs JPA (2016) Anemonefish depletion reduces survival, growth, reproduction and fishery productivity of mutualistic anemone–anemonefish colonies. Coral Reefs 35:375–386. doi: 10.1007/s00338-016-1401-8 CrossRefGoogle Scholar
  30. Godwin J, Fautin DG (1992) Defense of host actinians by anemonefishes. Copeia 3:902–908. doi: 10.2307/1446171 CrossRefGoogle Scholar
  31. Goldshmid R, Holzman R, Weihs D, Genin A (2004) Aeration of corals by sleep-swimming fish. Limnol Oceanogr 49(5):1832–1839. doi: 10.4319/lo.2004.49.5.1832 CrossRefGoogle Scholar
  32. Holbrook SJ, Schmitt RJ (2005) Growth, reproduction and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish. Coral Reefs 24:67–73. doi: 10.1007/s00338-004-0432-8 CrossRefGoogle Scholar
  33. Holbrook SJ, Brooks AJ, Schmitt RJ, Stewart HL (2008) Effects of sheltering fish on growth of their host corals. Mar Biol 155:521–530. doi: 10.1007/s00227-008-1051-7 CrossRefGoogle Scholar
  34. Huebner LK, Dailey B, Titus BM, Khalaf M, Chadwick NE (2012) Host preference and habitat segregation among Red Sea anemonefish: effects of sea anemone traits and fish life stages. Mar Ecol Prog Ser 464:1–15. doi: 10.3354/meps09964 CrossRefGoogle Scholar
  35. Johnson MA, Leal M, Schettino LR, Lara AC, Revell LJ, Losos JB (2008) A phylogenetic perspective on foraging mode evolution and habitat use in West Indian Anolis lizards. Anim Behav 75:555–563. doi: 10.1016/j.anbehav.2007.06.012 CrossRefGoogle Scholar
  36. Liberman T, Genin A, Loya Y (1995) Effects on growth and reproduction of the coral Stylophora pistillata by the mutualistic damselfish Dascyllus marginatus. Mar Biol 121:741–746. doi: 10.1007/bf00349310 CrossRefGoogle Scholar
  37. Lomnicki A (1988) Population ecology of individuals. Princeton University Press, PrincetonGoogle Scholar
  38. Mariscal RN (1970a) An experimental analysis of the protection of Amphiprion xanthurus Cuvier and Valenciennes and some other anemone fishes from sea anemones. J Exp Mar Biol Ecol 4:134–149. doi: 10.1016/0022-0981(70)90020-1 CrossRefGoogle Scholar
  39. Mariscal RN (1970b) The nature of the symbiosis between Indo-Pacific anemone fishes and sea anemones. Mar Biol 6:58–65. doi: 10.1007/bf00352608 CrossRefGoogle Scholar
  40. Mebs D (1994) Anemonefish symbiosis: vulnerability and resistance of fish to the toxin of the sea anemone. Toxicon 32(9):1059–1068. doi: 10.1016/0041-0101(94)90390-5 CrossRefGoogle Scholar
  41. Medve RJ (1978) Mycorrhiza: a common form of mutualism. Am Biol Teach 40:414–418. doi: 10.2307/4446322 CrossRefGoogle Scholar
  42. Mitchell JS, Dill M (2005) Why is group size correlated with the size of the host sea anemone in the false clown anemonefish? Can J Zool 83:372–376. doi: 10.1139/z05-014 CrossRefGoogle Scholar
  43. Nelson JS, Chou LM, Phang VPE (1994) Pigmentation variation in the anemonefish Amphiprion ocellaris (Teleostei: Pomacentridae): type, stability and its usefulness for individual identification. Raffles Bull Zool 42:927–930Google Scholar
  44. Ollerton J, McCollin D, Fautin DG, Allen GR (2007) Finding NEMO: nestedness engendered by mutualistic organization in anemonefish and their hosts. Proc R Soc B 274:591–598. doi: 10.1098/rspb.2006.3758 CrossRefGoogle Scholar
  45. Planes S, Jones GP, Thorrold SR (2009) Larval dispersal connects fish populations in a network of marine protected areas. Proc Natl Acad Sci USA 106:5693–5697. doi: 10.1073/pnas.0808007106 CrossRefGoogle Scholar
  46. Porat D, Chadwick-Furman NE (2004) Effects of anemonefish on giant sea anemones: expansion behavior, growth, and survival. Hydrobiologia 530(531):513–520. doi: 10.1007/s10750-004-2688-y Google Scholar
  47. Porat D, Chadwick-Furman NE (2005) Effects of anemonefish on giant sea anemones: ammonium uptake, zooxanthella content and tissue regeneration. Mar Freshw Behav Physiol 38:43–51. doi: 10.1080/10236240500057929 CrossRefGoogle Scholar
  48. Pruitt JN, Ferrari MCO (2011) Intraspecific trait variants determine the nature of interspecific interactions in a habitat-forming species. Ecology 92:1902–1908. doi: 10.1890/11-0701.1 CrossRefGoogle Scholar
  49. Pruitt JN, Krauel JJ (2010) The adaptive value of gluttony: predators mediate the life history trade-offs of satiation threshold. J Evol Biol 23:2104–2111. doi: 10.1111/j.1420-9101.2010.02070.x CrossRefGoogle Scholar
  50. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  51. Reale D, Reader SM, Sol D, McDougall PT, Dingemanse NJ (2007) Integrating animal temperament within ecology and evolution. Biol Rev 82:291–318. doi: 10.1111/j.1469-185x.2007.00010.x CrossRefGoogle Scholar
  52. Rezende EL, Lavabre JE, Guimaraes PR Jr, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928. doi: 10.1038/nature05956 CrossRefGoogle Scholar
  53. Riechert SE (1991) Prey abundance vs. diet breadth in a spider test system. Evol Ecol 5:327–338. doi: 10.1007/bf02214236 CrossRefGoogle Scholar
  54. Roopin M, Chadwick NE (2009) Benefits to host sea anemones from ammonia contributions of resident anemonefish. J Exp Mar Biol Ecol 370:27–34. doi: 10.1016/j.jembe.2008.11.006 CrossRefGoogle Scholar
  55. Roopin M, Henry RP, Chadwick NE (2008) Nutrient transfer in a marine mutualism: patterns of ammonia excretion by anemonefish and uptake by giant sea anemones. Mar Biol 154:547–556. doi: 10.1007/s00227-008-0948-5 CrossRefGoogle Scholar
  56. Roopin M, Thornhill DJ, Santos SR, Chadwick NE (2011) Ammonia flux, physiological parameters, and Symbiodinium diversity in the anemonefish symbiosis on Red Sea coral reefs. Symbiosis 53:63–74. doi: 10.1007/s13199-011-0110-x CrossRefGoogle Scholar
  57. Schmitt RJ, Holbrook SJ (2003) Mutualism can mediate competition and promote coexistence. Ecol Lett 6:898–902. doi: 10.1046/j.1461-0248.2003.00514.x CrossRefGoogle Scholar
  58. Sebens KP (1980) The regulation of asexual reproduction and intermediate body size in the sea anemone Anthopleura elegantissima (Brandt). Biol Bull 158:370–382. doi: 10.2307/1540863 CrossRefGoogle Scholar
  59. Sebens KP (1982) Asexual reproduction in Anthopleura Elegantissima (Anthozoa: Actiniaria): seasonality and spatial extent of clones. Ecology 63:434–444. doi: 10.2307/1938961 CrossRefGoogle Scholar
  60. Sih A, Bell A, Johnson JC (2004) Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol Evol 19:372–378. doi: 10.1016/j.tree.2004.04.009 CrossRefGoogle Scholar
  61. Stier AC, Gil MA, McKeon CS, Lemer S, Leray M, Mills SC, Osenberg CW (2012) Housekeeping mutualisms: do more symbionts facilitate host performance? PLoS ONE 7(4):e32079. doi: 10.1371/journal.pone.0032079 CrossRefGoogle Scholar
  62. Szczebak JT, Henry RT, Al-Horani FA, Chadwick NE (2013) Anemonefish oxygenate their anemone hosts at night. J Exp Biol 216:970–976. doi: 10.1242/jeb.075648 CrossRefGoogle Scholar
  63. Verde EA, Cleveland A, Lee RW (2015) Nutritional exchange in a tropical tripartite symbiosis II: direct evidence for the transfer of nutrients from host anemone and zooxanthellae to anemonefish. Mar Biol 162:2409–2429. doi: 10.1007/s00227-015-2768-8 Google Scholar
  64. Weber NA (1966) Fungus-growing ants. Science 153:587–604. doi: 10.1126/science.153.3736.587 CrossRefGoogle Scholar
  65. Wong MYL, Medina A, Uppaluri C, Arnold S, Seymour JR, Buston PM (2013) Brief communication: consistent behavioural traits and behavioural syndromes in pairs of the false clown anemonefish Amphiprion ocellaris. J Fish Biol 83:207–213. doi: 10.1111/jfb.12133 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Philip F. P. Schmiege
    • 1
  • Cassidy C. D’Aloia
    • 2
  • Peter M. Buston
    • 1
  1. 1.Department of BiologyBoston UniversityBostonUSA
  2. 2.Biology DepartmentWoods Hole Oceanographic InstitutionFalmouthUSA

Personalised recommendations