Skip to main content

Advertisement

Log in

Bluespine unicornfish (Naso unicornis) are both natural control agents and mobile vectors for invasive algae in a Hawaiian Marine Reserve

  • Invasive Species - Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

It has been hypothesized that protecting herbivorous fishes within Marine Reserves (MRs) will help these areas to resist algal overgrowth of corals. However, we lack empirical studies demonstrating the validity of key assumptions underpinning this concept, including that herbivorous fishes (1) are permanently resident within MR boundaries, (2) routinely consume the invasive algae of concern at significant levels and (3) are not significant mobile vectors for propagules of the invasive algae. A 46-year-old MR (Hawaii Marine Laboratory Refuge, 21°27′35″N, 157°48′15″W) in waters off Oahu provided a natural setting to examine these factors with the herbivorous bluespine unicornfish (Naso unicornis) and the invasive rhodophyte, Gracilaria salicornia. We acoustically tracked five unicornfish to quantify their residency and habitat use within the MR, conducted field and laboratory observations to confirm N. unicornis consume G. salicornia, and tested the viability of G. salicornia fragments recovered from unicornfish feces. Unicornfish were resident within the MR where they spent most time in reef crest habitat with occasional, brief forays into reef flat habitat. We confirmed unicornfish consume G. salicornia and found a significant positive correlation between algal canopy height and distance from the reef crest, presumably because grazing intensity is lower in less frequently utilized reef flat habitat. We demonstrated that unicornfish egest viable fragments of G. salicornia that resume vegetative growth after several weeks. We conclude that N. unicornis may act as both a natural control agent and a mobile vector for invasive alien algae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andreakis N, Schaffelke B (2012) Invasive marine seaweeds: pest or prize? In: Seaweed biology. Springer, Berlin, pp 235–262. doi:10.1007/978-3-642-28451-9_12

    Chapter  Google Scholar 

  • Arthur R, Done TJ, Marsh H, Harriot V (2006) Local processes strongly influence post-bleaching benthic recovery in the Lakshadweep atolls. Coral Reefs 25:427–440. doi:10.1007/s00338-006-0127-4

    Article  Google Scholar 

  • Beer S, Axelsson L (2004) Limitations in the use of PAM fluorometry for measuring photosynthetic rates of macroalgae at high irradiances. Eur J Phycol 39:1–7. doi:10.1080/0967026032000157138

    Article  Google Scholar 

  • Bellwood DR, Hugues TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429(6994):827–833. doi:10.1038/nature02691

    Article  CAS  Google Scholar 

  • Bohnsack JA (1993) Marine reserves. They enhance fisheries, reduce conflicts, and protect resources. Oceanus 36(3):63–71

    Google Scholar 

  • Calenge C (2006) The package “adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. J Ecol Model 197(3):516–519. doi:10.1016/j.ecolmodel.2006.03.017

    Article  Google Scholar 

  • Choat JH, Clements KD, Robbins WD (2002) The trophic status of herbivorous fishes on coral reefs. Mar Biol 140:613–623. doi:10.1007/s00227-004-1341-7

    Article  CAS  Google Scholar 

  • Davies KW, Sheley RL (2007) A conceptual framework for preventing the spatial dispersal of invasive plants. Weed Sci 55:178–184. doi:10.1614/WS-06-161

    Article  CAS  Google Scholar 

  • Demartini EE (1993) Modeling the potential of fishery reserves for managing Pacific coral reef fishes. Fish B-NOAA 91:414–427

    Google Scholar 

  • Dugan JE, Davis GE (1993) Applications of fishery refugia to coastal fishery management. Can J Fish Aquat Sci 50:2029–2042. doi:10.1139/f93-227

    Article  Google Scholar 

  • Eristhee N, Oxenford HA (2001) Home range size and use of space by Bermuda chub Kyphosus sectatrix (L.) in two marine reserves in the Soufriére Marine Management Area, St Lucia, West Indies. J Fish Biol 59:129–151. doi:10.1111/j.1095-8649.2001.tb01383.x

    Google Scholar 

  • Friedlander AM, Parish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30. doi:10.1016/S0022-0981(97)00164-0

    Article  Google Scholar 

  • Friedlander AM, Brown EK, Jokiel PL, Smith WR, Rodgers KS (2003) Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs 22(3):291–305. doi:10.1007/s00338-003-0317-2

    Article  Google Scholar 

  • Green A, Bellwood DR (2009) Monitoring functional groups of herbivorous reef fishes as indicators of coral reef resilience—a practical guide for coral reef managers in the Asia Pacific region. Gland, Switzerland, p 70

    Google Scholar 

  • Hardman E, Green JM, Desiré MS, Perrine S (2010) Movement of sonically tagged bluespine unicornfish, Naso unicornis, in relation to marine reserve boundaries in Rodrigues, western Indian Ocean. Aquat Conserv 20:357–361. doi:10.1002/aqc.1102

    Article  Google Scholar 

  • Hoey AS (2010) Size matters: macroalgal height influences the feeding response of coral reef herbivores. Mar Ecol Prog Ser 411:299–302

    Article  Google Scholar 

  • Hoey AS, Bellwood DR (2011) Suppression of herbivory by macroalgal density: a critical feedback on coral reefs? Ecol Lett 14:267–273. doi:10.1111/j.1461-0248.2010.01581.x

    Article  Google Scholar 

  • Holland KN, Peterson JD, Lowe CG, Wetherbee BM (1993) Movements, distribution and growth rates of the white goatfish Mulloides flavolineatus in a fisheries conservation zone. B Mar Sci 52:982–992

    Google Scholar 

  • Jokiel P, Oceanic Institute (2011). Hawaii coral reef assessment and monitoring program (CRAMP): fish data from year 2000 (NODC Accession 0000757). Version 1.1. National Oceanographic Data Center, NOAA. Dataset. Accessed 1 Dec 2015

  • Kramer DL, Chapman MR (1999) Implications of fish home range size and relocation for marine reserve function. Environ Biol Fish 55:65–79. doi:10.1023/A:1007481206399

    Article  Google Scholar 

  • Madin EMP, Madin JS, Booth DJ (2011) Landscape of fear visible from space. Sci Rep 1:14. doi:10.1038/srep00014

    Article  CAS  Google Scholar 

  • Magurran AE (1990) The adaptive significance of schooling as an anti-predator defence in fish. Annales zoologici fennici. Finnish Zoological Publishing Board, Helsinki, pp 51–66

    Google Scholar 

  • Marshell A, Mills JS, Rhodes KL, McIlwain J (2011) Passive acoustic telemetry reveals highly variable home range and movement patterns among unicornfish within a variable marine reserve. Coral Reefs 30:631–642. doi:10.1007/s00338-011-0770-2

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51(345):659–668. doi:10.1093/jexbot/51.345.659

    CAS  Google Scholar 

  • Meyer CG (2003) An empirical evaluation of the design and function of a small marine reserve (Waikiki Marine Life Conservation District). Dissertation, University of Hawaii, Manoa

  • Meyer CG, Holland KN (2001) A kayak method for tracking fish in very shallow habitats. Electronic tagging and tracking in marine fisheries. Springer, Netherlands, pp 289–296

    Chapter  Google Scholar 

  • Meyer CG, Holland KN (2005) Movement patterns, home range size and habitat utilization of the bluespine unicornfish, Naso unicornis (Acanthuridae) in a Hawaiian marine reserve. Environ Biol Fish 73:201–210. doi:10.1007/s10641-005-0559-7

    Article  Google Scholar 

  • Meyer CG, Holland KN, Papastamatiou YP (2007a) Seasonal and diel movements of giant trevally (Caranx ignobilis) at remote Hawaiian atolls: implications for the design of marine protected areas. Mar Ecol Prog Ser 333:13–25

    Article  Google Scholar 

  • Meyer CG, Papastamatiou YP, Holland KN (2007b) Seasonal, diel and tidal movements of green jobfish (Aprion virescens, Lutjanidae) at remote Hawaiian atolls: implications for marine protected area design. Mar Biol 151:2133–2143. doi:10.1007/s00227-007-0647-7

    Article  Google Scholar 

  • Meyer CG, Papastamatiou YP, Clark TB (2010) Differential movement patterns and site fidelity among trophic groups of reef fishes in a Hawaiian marine protected area. Mar Biol 157:1499–1793. doi:10.1007/s00227-010-1424-6

    Article  Google Scholar 

  • Mumby PJ, Steneck RS (2008) Coral reef management and conservation in the light of rapidly-evolving ecological paradigms. Trends Ecol Evol 23:555–563. doi:10.1016/j.tree.2008.06.011

    Article  Google Scholar 

  • Nowlis JS, Roberts CM (1999) Fisheries benefits and optimal design of marine reserves. Fish B-NOAA 97:604–616

    Google Scholar 

  • Paya I, Santelices B (1989) Macroalgae survive digestion by fishes. J Phycol 25:186–188

    Article  Google Scholar 

  • Pearlmutter NL, Vadas RL (1978) Regeneration of thallus fragments of Rhodochorton purpureum (Rhodophyceae, Nemalionales). Phycologia 17(2):186–190. doi:10.2216/i0031-8884-17-2-186.1

    Article  Google Scholar 

  • Polunin NVC (1990) Marine regulated areas: an expanded approach for the tropics. Resour Manage Opt 7:283–299

    Google Scholar 

  • Rakitin A, Kramer DL (1996) Effect of a marine reserve on the distribution of coral reef fishes in Barbados. Mar Ecol Prog Ser 131:97–113. doi:10.3354/meps131097

    Article  Google Scholar 

  • Randall JE (1965) Grazing effect on sea grasses by Herbivorous Reef Fishes in the West Indies. Ecology 46(3):255–260. doi:10.2307/1936328

    Article  Google Scholar 

  • Roberts C, Polunin NVC (1993) Marine reserves: simple solutions to managing complex fisheries? Ambio 22:363–368

    Google Scholar 

  • Robertson DR, Gaines SD (1986) Interference competition structures habitat use in a local assemblage of coral reef surgeonfishes. Ecology 67:1372–1383. doi:10.2307/1938693

    Article  Google Scholar 

  • Rodgers SK, Cox EF (1999) Rate of spread of introduced rhodophytes Kappaphycus alvarezii, Kappaphycus striatum, and Gracilaria salicornia and their current distributions in Kaneohe Bay, O‘ahu, Hawai‘i. Pac Sci 53:232–241

    Google Scholar 

  • Shackell N, Willison JM, (1995) International conference on science and the management of protected areas (2nd: 1994: Dalhousie University) Marine protected areas and sustainable fisheries. Science and Management of Protected Areas Association, Wolfville

  • Smith JE, Hunter CL, Marie Smith C (2002) Distribution and reproductive characteristics of nonindigenous and invasive marine algae in the Hawaiian Islands. Pac Sci 56(3):299–315. doi:10.1353/psc.2002.0030

    Article  Google Scholar 

  • Smith JE, Hunter CL, Conklin EJ, Most R, Savage T, Squair C, Smith CM (2004) Ecology of the invasive red alga Gracilaria salicornia (rhodophyta) on O‘ahu, Hawai‘i. Pac Sci 58(2):325–343. doi:10.1353/psc.2004.0023

    Article  Google Scholar 

  • Stimson J, Larned ST, Conklin E (2001) Effects of herbivory, nutrient levels, and introduced algae on the distribution and abundance of the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay, Hawaii. Coral Reefs 19:343–357. doi:10.1007/s003380000123

    Article  Google Scholar 

  • Vermeij MJA, van der Heijden RA, Olthius JG, Marhaver KL, Smith JE, Visser PM (2013) Survival and dispersal of turf algae and macroalgae consumed by herbivorous coral reef fishes. Oecologia 171:417–425. doi:10.1007/s00442-012-2436-3

    Article  Google Scholar 

  • Welsh JQ, Bellwood DR (2012) Spatial ecology of the steephead parrotfish (Chlorurus microrhinos): an evaluation using acoustic telemetry. Coral Reefs 31:55–65. doi:10.1007/s00338-011-0813-8

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization distribution in home range studies. Ecology 70:164–168. doi:10.2307/1938423

    Article  Google Scholar 

  • Yamamoto H (1991) Observations on an adelphoparasite Congracilaria babae Yamamoto (Gracilariaceae, Rhodophyta) of the Phillipines. Jpn J Phycol 39:381–384

    Google Scholar 

Download references

Acknowledgements

We thank Luisa Quieroz, Mariana Azevêdo, Kira Wong, Leon Weaver and Mark Royer with fieldwork, and Greta Aeby, Tim Tricas, Kim Holland and Mark Heckman for providing laboratory resources for holding fish, grazing and algal grow-out experiments. We are grateful to Ginnie Carter and the Haggerdorn Lab for use of the fluorometer for measuring algal photosynthetic capacity. We are indebted to John Stimson, the Hawaii Division of Aquatic Resources, and the Friedlander Lab for advice and references for similar research performed.

Funding

This study was funded by a SeaGrant award (#UNIHI-SEAGRANT—20101809) to CGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacy L. Bierwagen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest to disclose.

Human and animal rights

All national institutional guidelines for the care and use of animals were followed under University of Hawaii IACUC permit 1747: ‘Tracking long-term movements of coral reef fishes.’

Additional information

Responsible Editor: F. Chan.

Reviewed by N. Hussey and an undisclosed expert.

This article is part of the Topical Collection on Invasive Species.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bierwagen, S.L., Price, D.K., Pack, A.A. et al. Bluespine unicornfish (Naso unicornis) are both natural control agents and mobile vectors for invasive algae in a Hawaiian Marine Reserve. Mar Biol 164, 25 (2017). https://doi.org/10.1007/s00227-016-3049-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-3049-x

Keywords

Navigation