Marine Biology

, 163:236 | Cite as

Geographic patterns of Symbiodinium diversity associated with the coral Mussismilia hispida (Cnidaria, Scleractinia) correlate with major reef regions in the Southwestern Atlantic Ocean

  • Natasha Picciani
  • Isabela Galvão de Lossio e Seiblitz
  • Paulo Cesar de Paiva
  • Clovis Barreira e Castro
  • Carla ZilberbergEmail author
Original paper


Shallow water reef-building corals associate with photosynthesizing dinoflagellates (Symbiodinium spp.) that may affect growth and resilience of their hosts. Understanding host–symbiont associations is critical for assessing the susceptibility of corals to climatic changes. Despite that, the diversity of Symbiodinium associated with corals from the Southwestern Atlantic Ocean is poorly known. Here, we describe diversity across major Symbiodinium clades associated with colonies of the endemic reef-building coral Mussismilia hispida (Verrill, 1902) along the Brazilian coast. By analyzing the 18S rDNA gene, we found that M. hispida associates with three clades of Symbiodinium (A, B and C). Moreover, the geographic distribution of host–symbiont associations is related to temperature and turbidity and closely follows previously recognized reef regions along the Brazilian coast. These results suggest that similar ecological processes are likely shaping both the reef communities and the host–symbiont associations over M. hispida distribution along the coast. Our study provides an advance in the understanding of symbiont diversity in a key reef-building coral. In addition, it contributes new insights for future investigations aiming at comprehending the factors determining Symbiodinium geographic distribution.


Coral Reef Oceanic Island Coral Community Brazilian Coast Brazil Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Dr. A. M. Solé-Cava (UFRJ) and Dr. M. Klautau (UFRJ) for laboratory facilities. Thomas Bell (UCSB) provided helpful assistance with compilation of MODIS-Aqua data. Dr. M. Warner (UD) generously supplied DNA extracts of Symbiodinium cultures. Dr. E. Calderon (Coral Vivo/MNRJ), C. Pereira (Coral Vivo), L. Lopes (Coral Vivo), A. Climério, J. Medeiros (CEBIMar), E. Honuma (CEBIMar) and J. Sebroeck (in memoriam, CEBIMar) provided assistance in field collections. Dr. T. Oakley (UCSB), colleagues of the Evolution Seminar (EV595/UCSB), L. Lima (IEAPM) and V. Tascheri (UFRJ) contributed with insightful comments on early versions of the manuscript. We thank the Brazilian Marine Biodiversity Network SISBIOTA-Mar (CNPq 563276/2010-0 and FAPESC 6308/2011-8, PI: S.R. Floeter) for collection of samples at PML, FZ, TE, SA, AR, FN and TR. Project BIOTA (FAPERJ E-26/110.015/2011, PI: PC Paiva), particularly, Dr. R. Ventura and Dr. F. Pitombo for collecting at IG, A. Garrido and L. Peluso for sampling in GP and Dr. F. Nunes for the JP samples. We also thank the Coral Vivo Research Network, sponsored by Petrobras through the program Petrobras Socioenvironmental and co-sponsored by Arraial D’Ajuda EcoParque, for financial and logistical support for field work, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for a master fellowship to NP (process 130913/2011-1) and a research fellowship to PCP (process 303939/2014-1). We are thankful to the NASA Ocean Biology Processing Group for production and distribution of MODIS-Aqua satellite data.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest relevant to the subject of this article.

Animal rights statement

Animals have been sampled and/or treated according to the national legislation, and all required permissions have been obtained.

Supplementary material

227_2016_3010_MOESM1_ESM.pdf (90 kb)
Supplementary material 1 (PDF 90 kb)
227_2016_3010_MOESM2_ESM.pdf (135 kb)
Supplementary material 2 (PDF 135 kb)
227_2016_3010_MOESM3_ESM.pdf (181 kb)
Supplementary material 3 (PDF 180 kb)


  1. Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689CrossRefGoogle Scholar
  2. Baker AC, Rowan R, Knowlton N (1997) Symbiosis ecology of two Caribbean acroporid corals. Proc 8th Int Coral Reef Symp 2:1295–1300Google Scholar
  3. Baker AC, Glynn PW, Riegl B (2008) Climate change and coral reef bleaching: an ecological assessment of long-term impacts, recovery trends and future outlook. Estuar Coast Shelf Sci 80:435–471CrossRefGoogle Scholar
  4. Banaszak AT, LaJeunesse TC, Trench RK (2000) The synthesis of mycosporine-like amino acids (MAAs) by cultured, symbiotic dinoflagellates. J Exp Mar Biol Ecol 249:219–233CrossRefGoogle Scholar
  5. Berkelmans R, Van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a “nugget of hope” for coral reefs in an era of climate change. Proc R Soc B 273:2305–2312CrossRefGoogle Scholar
  6. Blackall LL, Wilson B, van Oppen MJH (2015) Coral—the world's most diverse symbiotic ecosystem. Mol Ecol 24:5330–5347CrossRefGoogle Scholar
  7. Bongaerts P, Riginos C, Ridgway T, Sampayo EM, van Oppen MJH, Englebert N, Vermeulen F, Hoegh-Guldberg O (2010) Genetic divergence across habitats in the widespread coral Seriatopora hystrix and its associated Symbiodinium. PLoS One 5:e10871Google Scholar
  8. Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Springer, New YorkGoogle Scholar
  9. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529CrossRefGoogle Scholar
  10. Caldeira K (2013) Coral “refugia” amid heating seas. Nat Clim Change 3:444–445CrossRefGoogle Scholar
  11. Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sci 69:357–371Google Scholar
  12. Castro CB, Segal B, Negrão F, Calderon EN (2012) Four-year monthly sediment deposition on turbid southwestern Atlantic coral reefs, with a comparison of benthic assemblages. Braz J Oceanogr 60:49–63Google Scholar
  13. Chan YL, Pochon X, Fisher MA, Wagner D, Concepcion GT, Kahng SE, Toonen RJ, Gates RD (2009) Generalist dinoflagellate endosymbionts and host genotype diversity detected from mesophotic (67–100 m depths) coral Leptoseris. BMC Ecol 9:1–7CrossRefGoogle Scholar
  14. Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34CrossRefGoogle Scholar
  15. Coffroth MA, Santos SR, Goulet TL (2001) Early ontogenetic expression of specificity in a cnidarian-algal symbiosis. Mar Ecol Prog Ser 222:85–96CrossRefGoogle Scholar
  16. Cooper TF, Berkelmans R, Ulstrup KE, Weeks S, Radford B, Jones AM, Doyle J, Canto M, O’Leary RA, van Oppen MJH (2011) Environmental factors controlling the distribution of Symbiodinium harboured by the coral Acropora millepora on the Great Barrier Reef. PLoS One 6:e25536CrossRefGoogle Scholar
  17. Core Team R (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  18. Costa CF, Sassi R, Gorlach-Lira K (2008) Zooxanthellae genotypes in the coral Siderastrea stellata from coastal reefs in northeastern Brazil. J Exp Mar Biol Ecol 367:149–152CrossRefGoogle Scholar
  19. Cunning R, Baker AC (2012) Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat Clim Change 2:1–4CrossRefGoogle Scholar
  20. Ekau W, Knoppers B (1999) An introduction to the pelagic system of the Northeast and East Brazilian shelf. Arch Fish Mar Res 47:5–24Google Scholar
  21. Frade PR, De Jongh F, Vermeulen F, van Bleijswijk J, Bak RPM (2008) Variation in symbiont distribution between closely related coral species over large depth ranges. Mol Ecol 17:691–703CrossRefGoogle Scholar
  22. Frieler K, Meinshausen M, Golly A, Mengel M, Lebek K, Donner SD, Hoegh-Guldberg O (2013) Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat Clim Change 3:165–170CrossRefGoogle Scholar
  23. Fukami H, Budd AF, Paulay G, Solé-Cava AM, Chen CA, Iwao K, Knowlton N (2004) Conventional taxonomy obscures deep divergence between Pacific and Atlantic corals. Nature 427:832–835CrossRefGoogle Scholar
  24. Garren M, Walsh SM, Caccone A, Knowlton N (2006) Patterns of association between Symbiodinium and members of the Montastraea annularis species complex on spatial scales ranging from within colonies to between geographic regions. Coral Reefs 25:503–512CrossRefGoogle Scholar
  25. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’ s coral reefs. Mar Freshw Res 50:839–866CrossRefGoogle Scholar
  26. Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH (2012) Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change 2:116–120CrossRefGoogle Scholar
  27. Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob Change Biol 10:1627–1641CrossRefGoogle Scholar
  28. Jones AM, Berkelmans R (2011) Tradeoffs to thermal acclimation: energetics and reproduction of a reef coral with heat tolerant Symbiodinium type-D. J Mar Biol 2011:1–12CrossRefGoogle Scholar
  29. Knowlton N, Rohwer F (2003) Multispecies microbial mutualisms on coral reefs: the host as an habitat. Am Nat 162:S51–S62CrossRefGoogle Scholar
  30. Laborel J (1970) Leus peuplements de Madreporaires des cotes tropicales du Bresil. Ann. L’Université D’Abidjan Série EII:1–261Google Scholar
  31. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400CrossRefGoogle Scholar
  32. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581CrossRefGoogle Scholar
  33. LaJeunesse TC, Loh WKW, Van Woesik R, Hoegh-guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054CrossRefGoogle Scholar
  34. Leão ZMAN, Kikuchi RKP, Testa V (2003) Corals and coral reefs of Brazil. In: Cortés J (ed) Latin American Coral Reefs. Elsevier Science B.V, Amsterdam, pp 9–52CrossRefGoogle Scholar
  35. Legendre P, Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr 69:1–24CrossRefGoogle Scholar
  36. Loh W, Carter D, Hoegh-Guldberg O (1998) Diversity of zooxanthellae from scleractinian corals of One Tree Island (The Great Barrier Reef). Australian Coral Reef Society 75th Anniversary Conference, Heron Island, Australia, pp 141–151Google Scholar
  37. Loh WKW, Loi T, Carter D, Hoegh-guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107CrossRefGoogle Scholar
  38. Maida M, Ferreira B (1997) Coral reefs of Brazil: an overview. In: Proc. 8th Int. Coral Reef Symp. 1:263–274Google Scholar
  39. Mieog JC, van Oppen MJH, Cantin NE, Stam WT, Olsen JL (2007) Real-time PCR reveals a high incidence of Symbiodinium clade D at low levels in four scleractinian corals across the Great Barrier Reef: implications for symbiont shuffling. Coral Reefs 26:449–457CrossRefGoogle Scholar
  40. Minh BQ, Nguyen MAT, von Haeseler A (2013) Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol 30:1188–1195CrossRefGoogle Scholar
  41. Monteiro JG, Costa CF, Gorlach-Lira K, Fitt WK, Stefanni SS, Sassi R, Santos RS, LaJeunesse TC (2013) Ecological and biogeographic implications of Siderastrea symbiotic relationship with Symbiodinium sp. C46 in Sal Island (Cape Verde, East Atlantic Ocean). Mar Biodivers 43:261–272CrossRefGoogle Scholar
  42. Muller J, Creevey CJ, Thompson JD, Arendt D, Bork P (2010) AQUA: automated quality improvement for multiple sequence alignments. Bioinformatics 26:263–265CrossRefGoogle Scholar
  43. Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Mol Biol Evol 32:268–274CrossRefGoogle Scholar
  44. Oksanen J, Blanchet FG, Kindt R, Legendre P, Michin PR, O’Hara RB, Simpson GL, Solymos P, Stevens HH, Wagner H (2015) vegan: community ecology package. R-package version 2.3-2.
  45. Oliver TA, Palumbi SR (2011) Many corals host thermally resistant symbionts in high-temperature habitat. Coral Reefs 30:241–250CrossRefGoogle Scholar
  46. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497CrossRefGoogle Scholar
  47. Pochon X, Pawlowski J (2006) Evolution of the soritids-Symbiodinium symbiosis. Symbiosis 42:77–88Google Scholar
  48. Rodriguez-Lanetty M, Loh W, Carter D, Hoegh-Guldberg O (2001) Latitudinal variability in symbiont specificity within the widespread scleractinian coral Plesiastrea versipora. Mar Biol 138:1175–1181CrossRefGoogle Scholar
  49. Rogers CS (1990) Responses of coral reefs and reef organisms to sedimentation. Mar Ecol Prog Ser 62:185–202CrossRefGoogle Scholar
  50. Rowan R, Powers DA (1991a) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351CrossRefGoogle Scholar
  51. Rowan R, Powers DA (1991b) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser Oldend 71:65–73CrossRefGoogle Scholar
  52. Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269CrossRefGoogle Scholar
  53. Silva-Lima AW, Walter JM, Garcia GD, Ramires N, Ank G, Meirelles PM, Nobrega AF, Silva-Neto ID, Moura RL, Salomon PS, Thompson CC, Thompson FL (2015) Multiple Symbiodinium strains are hosted by the Brazilian endemic corals Mussismilia spp. Microb Ecol 70:301–310Google Scholar
  54. Silverstein RN, Correa AMS, Baker AC (2012) Specificity is rarely absolute in coral-algal symbiosis: implications for coral response to climate change. Proc R Soc B 279:2609–2618CrossRefGoogle Scholar
  55. Soares MDO, Paiva CC, Eduardo J, Freitas P, Monteiro T (2011) Gestão de unidades de conservação marinhas: o caso do Parque Estadual Marinho da Pedra da Risca do Meio, NE–Brasil. Rev da Gestão Costeira Integr 11:257–268CrossRefGoogle Scholar
  56. Spalding MD, Fox HE, Allen GR, Davidson N, Ferdaña ZA, Finlayson MAX, Halpern BS, Jorge MA, Lombana AL, Lourie SA, Martin KD, Manus MC, Molnar J, Recchia CA, Robertson J (2007) Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. BioSci 57:573–583CrossRefGoogle Scholar
  57. Stat M, Bird CE, Pochon X, Chasqui L, Chauka LJ, Concepcion GT, Logan D, Takabayashi M, Toonen RJ, Gates RD (2011) Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One 6:e15854CrossRefGoogle Scholar
  58. Sullivan-Sealey K, Bustamante G (1999) Setting geographic priorities for marine conservation in the Latin America and the Caribbean. The Nature Conservancy, ArlingtonGoogle Scholar
  59. Tonk L, Sampayo EM, Weeks S, Magno-Canto M, Hoegh-Guldberg O (2013) Host-specific interactions with environmental factors shape the distribution of Symbiodinium across the Great Barrier Reef. PLoS One 8:e68533CrossRefGoogle Scholar
  60. Ulstrup KE, Van Oppen MJH (2003) Geographic and habitat partitioning of genetically distinct zooxanthellae (Symbiodinium) in Acropora corals on the Great Barrier Reef. Mol Ecol 12:3477–3484CrossRefGoogle Scholar
  61. Valentin J (2001) The Cabo Frio upwelling system, Brazil. In: Seeliger U, Kjerfve B (eds) Ecological studies, vol 144., Coastal marine ecosystems of Latin AmericaSpringer, Berlin, pp 97–105Google Scholar
  62. Van Oppen MJ, Palstra FP, Piquet AM, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc B 268:1759–1767CrossRefGoogle Scholar
  63. Van Oppen MJH, Mahiny AJ, Done TJ (2005) Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs 24:482–487CrossRefGoogle Scholar
  64. van Oppen MJH, Baker AC, Coffroth MA, Willis BL (2009) Bleaching resistance and the role of algal endosymbionts. In: van Oppen MJH, Lough J (eds) Coral bleaching: patterns, processes, causes and consequences, Ecological Studies 205. Springer, Berlin, pp 83–102CrossRefGoogle Scholar
  65. Wagner D, Pochon X, Irwin L, Toonen RJ, Gates RD (2011) Azooxanthellate? Most Hawaiian black corals contain Symbiodinium. Proc R Soc B 278:1323–1328CrossRefGoogle Scholar
  66. Weis VM (2010) The susceptibility and resilience of corals to thermal stress: adaptation, acclimatization or both? Mol Ecol 19:1515–1517CrossRefGoogle Scholar
  67. Wicks LC, Gardner JPA, Davy SK (2012) Host tolerance, not symbiont tolerance, determines the distribution of coral species in relation to their environment at a Central Pacific atoll. Coral Reefs 31:389–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de Invertebrados, Museu NacionalUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Instituto Coral VivoSanta Cruz Cabrália, BABrazil
  3. 3.Departamento de Zoologia, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  4. 4.Department of Ecology, Evolution and Marine BiologyUniversity of California at Santa BarbaraSanta BarbaraUSA

Personalised recommendations