Marine Biology

, 163:207 | Cite as

Metabolic responses of the North Pacific krill, Euphausia pacifica, to short- and long-term pCO2 exposure

  • Helen L. CooperEmail author
  • Donald C. Potts
  • Adina Paytan
Original paper


While ocean acidification is likely to have major effects on many marine organisms, those species that regularly experience variable pCO2 environments may be more tolerant of future predicted changes in ocean chemistry. Euphausia pacifica is an abundant krill species along the Pacific coast of North America and one that regularly experiences varying pCO2 levels during seasonal upwelling, as well as during daily vertical migrations to depth where pCO2 is higher. Krill were collected from Monterey Bay, California (36.8°N, 121.9°W), and experiments were performed from June to August 2014 and maintained at two pCO2 levels (400 and 1200 µatm). Three metabolic responses (oxygen consumption, ingestion rate, and nutrient excretion rates) of E. pacifica were measured. Oxygen consumption declined by 31 % in the first 24 h following exposure to high pCO2 and remained low after 21 days. Oxygen consumption at low pCO2 was low for the first 12 h, increased by 34 % at 24 h, but returned to initial values by 21 days. After 3 weeks of continuous exposure, oxygen consumption rates were 32 % lower in the high pCO2 group. Ingestion and ammonium excretion rates were both significantly lower in the high pCO2 group after 24-h exposure, but not after 7 or 21 days. There was no effect of pCO2 on phosphate excretion. Taken together, these results indicate that E. pacifica has a lower metabolic rate during both short-term (24 h) and longer-term (21 days) exposure to high pCO2. Such metabolic depression may explain previously reported declines in growth of E. pacifica exposed to high pCO2.


Phytoplankton Oxygen Consumption Rate Ocean Acidification Ammonium Excretion High pCO2 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Luis Hernandez, Honor Weber, and Sarah Dondelinger for laboratory help and assistance with water chemistry analyses; Dave Benet and Steve Clabuesch for assistance in building the pCO2-air mixing system and with krill collections; Betsy Steele for culturing phytoplankton and general laboratory guidance; and Rob Franks for assistance with nutrient and chemical analyses.


This study was funded through awards from the NOAA West Coast and Polar Regions Undersea Research Center (project FP12783A) and NSF (OCE-1040952) to A. Paytan, a UCSC Committee on Research grant and a gift from the Mitsubishi corporation to D. Potts, and awards to H. Cooper from the Friends of Long Marine Laboratory, Meyers Trust, and the UCSC 503 Department of Ecology and Evolutionary Biology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.


  1. Bollens SM, Frost BW, Lin TS (1992) Recruitment, growth, and diel vertical migration of Euphausia pacifica in a temperate fjord. Mar Biol 114(2):219–228. doi: 10.1007/BF00349522 CrossRefGoogle Scholar
  2. Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324(5925):347–348. doi: 10.1126/science.1170756 CrossRefGoogle Scholar
  3. Brinton E (1962) The distribution of Pacific euphausiids. Bulletin of the Scripps Institution of Oceanography, University of California 8:41–270Google Scholar
  4. Brinton E (1976) Population biology of Euphausia pacifica off Southern California. Fish Bull 74(4):733–762Google Scholar
  5. Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425(6956):365. doi: 10.1038/425365a CrossRefGoogle Scholar
  6. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C9):C09S04. doi: 10.1029/2004JC002671
  7. Calosi P, Rastrick SP, Lombardi C, de Guzman HJ, Davidson L, Jahnke M, Giangrande A, Hardege JD, Schulze A, Spicer JI, Gambi MC (2013) Adaptation and acclimatization to ocean acidification in marine ectotherms: an in situ transplant experiment with polychaetes at a shallow CO2 vent system. Philos Trans R Soc Lond B Biol Sci 368(1627):20120444. doi: 10.1098/rstb.2012.0444 CrossRefGoogle Scholar
  8. Cameron JN, Iwama GK (1987) Compensation of progressive hypercapnia in channel catfish and blue crabs. J Exp Biol 133(1):183–197Google Scholar
  9. Cameron JN, Wood CM (1985) Apparent H+ excretion and CO2 dynamics accompanying carapace mineralization in the blue crab (Callinectes sapidus) following moulting. J Exp Biol 114(1):181–196Google Scholar
  10. Carter HA, Ceballos-Osuna L, Miller NA, Stillman JH (2013) Impact of ocean acidification on metabolism and energetics during early life stages of the intertidal porcelain crab Petrolisthes cinctipes. J Exp Biol 216(Pt 8):1412–1422. doi: 10.1242/jeb.078162 CrossRefGoogle Scholar
  11. Conover RJ (1978) Transformation of organic matter. Marine ecology. Wiley, Chichester, pp 221–499Google Scholar
  12. Cooper H, Potts D, Paytan A (2016) Effects of elevated pCO2 on the survival, growth, and moulting of the Pacific krill species Euphausia pacifica. ICES J Mar Sci. doi: 10.1093/icesjms/fsw021 Google Scholar
  13. Cripps G, Lindeque P, Flynn KJ (2014) Have we been underestimating the effects of ocean acidification in zooplankton? Glob Chang Biol 20(11):3377–3385. doi: 10.1111/gcb.12582 CrossRefGoogle Scholar
  14. Deigweiher K, Hirse T, Bock C, Lucassen M, Pörtner HO (2010) Hypercapnia induced shifts in gill energy budgets of Antarctic notothenioids. J Comp Physiol B 180(3):347–359. doi: 10.1007/s00360-009-0413-x CrossRefGoogle Scholar
  15. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  16. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  17. Dissanayake A, Ishimatsu A (2011) Synergistic effects of elevated CO2 and temperature on the metabolic scope and activity in a shallow-water coastal decapod (Metapenaeus joyneri; Crustacea: penaeidae). ICES J Mar Sci 68(6):1147–1154. doi: 10.1093/icesjms/fsq188 CrossRefGoogle Scholar
  18. Doney SC, Schimel DS (2007) Carbon and climate system coupling on timescales from the precambrian to the anthropocene. Annu Rev Environ Resour 32:31–66. doi: 10.1146/ CrossRefGoogle Scholar
  19. Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean acidification: the other CO2 problem. Ann Rev Mar Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  20. Dupont S, Havenhand J, Thorndyke W, Peck L, Thorndyke M (2008) Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Mar Ecol Prog Ser 373:285–294. doi: 10.3354/meps07800 CrossRefGoogle Scholar
  21. Edenhofer O, Pichs-Madruga R, Sokona Y, Farahani E, Kadner S, Seyboth K (2014) IPCC, 2014: Summary for Policymakers. In: Climate change 2014: Mitigation of climate change. Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge and New YorkGoogle Scholar
  22. Enright JT (1977) Diurnal vertical migration: adaptive significance and timing. Part 1. Selective advantage: A metabolic model1. Limnol Oceanogr 22(5):856–872. doi: 10.4319/lo.1977.22.5.0856 CrossRefGoogle Scholar
  23. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65(3):414–432. doi: 10.1029/2001GB1459 CrossRefGoogle Scholar
  24. Feely RA, Sabine CL, Hernandez-Ayon JM, Ianson D, Hales B (2008) Evidence for upwelling of corrosive “acidified” water onto the continental shelf. Science 320(5882):1490–1492. doi: 10.1126/science.1155676 CrossRefGoogle Scholar
  25. Feely RA, Doney SC, Cooley SR (2009) Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22(4):36–47. doi: 10.5670/oceanog.2009.95 CrossRefGoogle Scholar
  26. Gómez-Gutiérrez J, Feinberg LR, Shaw T, Peterson WT (2006) Variability in brood size and female length of Euphausia pacifica among three populations in the North Pacific. Mar Ecol Prog Ser 323:185–194. doi: 10.3354/meps323185 CrossRefGoogle Scholar
  27. Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev Camb Philos Soc 74(1):1–40. doi: 10.1017/S0006323198005258 CrossRefGoogle Scholar
  28. Harris R, Wiebe P, Lenz J, Skjoldal H-R, Huntley M (2000) ICES zooplankton methodology manual. Academic Press, San DiegoGoogle Scholar
  29. Heisler N (1986) Acid-base regulation in animals. Elsevier Science, MichiganGoogle Scholar
  30. Henry RP, Wheatly MG (1992) Interaction of respiration, ion regulation, and acid-base balance in the everyday life of aquatic crustaceans. Am Zool 32(3):407–416. doi: 10.1093/icb/32.3.407 CrossRefGoogle Scholar
  31. Hildebrandt N, Sartoris FJ, Schulz KG, Riebesell U, Niehoff B (2015) Ocean acidification does not alter grazing in the calanoid copepods Calanus finmarchicus and Calanus glacialis. ICES Journal of Marine Science: Journal du Conseil :fsv226. doi: 10.1093/icesjms/fsv226
  32. Holcomb M, McCorkle DC, Cohen AL (2010) Long-term effects of nutrient and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386(1):27–33. doi: 10.1016/j.jembe.2010.02.007 CrossRefGoogle Scholar
  33. Hu MY, Casties I, Stumpp M, Ortega-Martinez O, Dupont S (2014) Energy metabolism and regeneration are impaired by seawater acidification in the infaunal brittlestar Amphiura filiformis. J Exp Biol 217(Pt 13):2411–2421. doi: 10.1242/jeb.100024 CrossRefGoogle Scholar
  34. Isari S, Zervoudaki S, Saiz E, Pelejero C, Peters J (2015) Copepod vital rates under CO2 -induced acidification: a calanoid species and a cyclopoid species under short-term exposures. J Plankton Res 37(5):912–922. doi: 10.1093/plankt/fbv057 CrossRefGoogle Scholar
  35. Kawaguchi S, Kurihara H, King R, Hale L, Berli T, Robinson JP, Ishida A, Wakita M, Virtue P, Nicol S, Ishimatsu A (2011) Will krill fare well under Southern Ocean acidification? Biol Lett 7:288–291. doi: 10.1098/rsbl.2010.0777 CrossRefGoogle Scholar
  36. Kawaguchi S, Ishida A, King R, Raymond B, Waller N, Constable A, Nicol S, Wakita M, Ishimatsu A (2013) Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat Clim Change 3(9):843–847. doi: 10.1038/nclimate1937 CrossRefGoogle Scholar
  37. Kleypas JA, Feely RA, Fabry VJ, Langdon C, Sabine CL, Robbins LL (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Rep of a workshop sponsored by NSF, NOAA & USGS, St. Petersburg, FL, 18–20 April 2005, p 88Google Scholar
  38. Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13(11):1419–1434. doi: 10.1111/j.1461-0248.2010.01518.x CrossRefGoogle Scholar
  39. Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Chang Biol 19(6):1884–1896. doi: 10.1111/gcb.12179 CrossRefGoogle Scholar
  40. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi: 10.3354/meps07802 CrossRefGoogle Scholar
  41. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98. doi: 10.3354/ab00009 CrossRefGoogle Scholar
  42. Langenbuch M, Pörtner H-O (2002) Changes in metabolic rate and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. J Exp Biol 205(8):1153–1160Google Scholar
  43. Langenbuch M, Pörtner H-O (2004) High sensitivity to chronically elevated CO2 levels in a eurybathic marine sipunculid. Aquat Toxicol 70(1):55–61CrossRefGoogle Scholar
  44. Lehman JT (1980) Release and cycling of nutrients between planktonic algae and herbivores. Limnol Oceanogr 25(4):620–632. doi: 10.4319/lo.1980.25.4.0620 CrossRefGoogle Scholar
  45. Lewis CN, Brown KA, Edwards LA, Cooper G, Findlay HS (2013) Sensitivity to ocean acidification parallels natural pCO2 gradients experienced by Arctic copepods under winter sea ice. Proc Natl Acad Sci USA 110(51):E4960–E4967. doi: 10.1073/pnas.1315162110 CrossRefGoogle Scholar
  46. Li W, Gao K (2012) A marine secondary producer respires and feeds more in a high CO2 ocean. Mar Pollut Bull 64(4):699–703. doi: 10.1016/j.marpolbul.2012.01.033 CrossRefGoogle Scholar
  47. Li W, Han G, Dong Y, Ishimatsu A, Russell BD, Gao K (2015) Combined effects of short-term ocean acidification and heat shock in a benthic copepod Tigriopus japonicus Mori. Mar Biol 162(9):1901–1912CrossRefGoogle Scholar
  48. Maas AE, Wishner KF, Seibel BA (2012) The metabolic response of pteropods to acidification reflects natural CO2-exposure in oxygen minimum zones. Biogeosciences 9:747–757. doi: 10.5194/bg-9-747-2012 CrossRefGoogle Scholar
  49. Marinovic B, Mangel M (1999) Krill can shrink as an ecological adaptation to temporarily unfavorable environments. Ecol Lett 2:338–343Google Scholar
  50. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  51. Melzner F, Gutowska MA, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences 6:2313–2331. doi: 10.5194/bg-6-2313-2009 CrossRefGoogle Scholar
  52. Miles H, Widdicombe S, Spicer JI, Hall-Spencer J (2007) Effects of anthropogenic seawater acidification on acid–base balance in the sea urchin Psammechinus miliaris. Mar Pollut Bull 54(1):89–96. doi: 10.1016/j.marpolbul.2006.09.021 CrossRefGoogle Scholar
  53. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437(7059):681–686. doi: 10.1038/nature04095 CrossRefGoogle Scholar
  54. Pane EF, Barry JP (2007) Extracellular acid-base regulation during short-term hypercapnia is effective in a shallow-water crab, but ineffective in a deep-sea crab. Mar Ecol Prog Ser 334:1–9. doi: 10.3354/meps334001 CrossRefGoogle Scholar
  55. Pespeni MH, Chan F, Menge BA, Palumbi SR (2013) Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem. Integr Comp Biol 53(5):857–870. doi: 10.1093/icb/ict094 CrossRefGoogle Scholar
  56. Pierrot D, Lewis E, Wallace D.W.R. (2006) MS excel program developed for CO2 system calculations [computer file]. ORNL/CDIAC-105a Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy [distributor]Google Scholar
  57. Pörtner HO, Langenbuch M, Reipschläger A (2004) Biological impact of elevated ocean CO2 concentrations: lessons from animal physiology and earth history. J Oceanogr 60(4):705–718. doi: 10.1007/s10872-004-5763-0 CrossRefGoogle Scholar
  58. Pörtner HO, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: From Earth history to global change. J Geophys Res 110(C9):C09S10. doi: 10.1029/2004JC002561
  59. Roman MR, Rublee PA (1980) Containment effects in copepod grazing experiments: a plea to end the black box approach. Limnol Oceanogr 25(6):982–990. doi: 10.4319/lo.1980.25.6.0982 CrossRefGoogle Scholar
  60. Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105(52):20776–20780. doi: 10.1073/pnas.0806886105 CrossRefGoogle Scholar
  61. Ross PM, Parker L, O’Connor WA, Bailey EA (2011) The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 3(4):1005–1030. doi: 10.3390/w3041005 CrossRefGoogle Scholar
  62. Saba GK, Schofield O, Torres JJ, Ombres EH, Steinberg DK (2012) Increased feeding and nutrient excretion of adult Antarctic krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS ONE 7(12):e52224. doi: 10.1371/journal.pone.0052224 CrossRefGoogle Scholar
  63. Seibel BA (2003) Biological impacts of deep-sea carbon dioxide injection inferred from indices of physiological performance. J Exp Biol 206(4):641–650. doi: 10.1242/jeb.00141 CrossRefGoogle Scholar
  64. Seibel BA (2011) Critical oxygen levels and metabolic suppression in oceanic oxygen minimum zones. J Exp Biol 214(Pt 2):326–336. doi: 10.1242/jeb.049171 CrossRefGoogle Scholar
  65. Solomon S (2007) Climate Change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New YorkGoogle Scholar
  66. Stocker TF, Qin Q, Plattner G-K, et al. (2013) Summary for Policymakers. In: Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge and New YorkGoogle Scholar
  67. Stramma L, Johnson GC, Sprintall J, Mohrholz V (2008) Expanding oxygen-minimum zones in the tropical oceans. Science 320(5876):655–658. doi: 10.1126/science.1153847 CrossRefGoogle Scholar
  68. Stumpp M, Trübenbach K, Brennecke D, Hu MY, Melzner F (2012) Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO2 induced seawater acidification. Aquat Toxicol 110–111:194–207. doi: 10.1016/j.aquatox.2011.12.020 CrossRefGoogle Scholar
  69. Takahashi M, Ikeda T (1975) Excretion of ammonia and inorganic phosphorus by Euphausia pacifica and Metridia pacifica at different concentrations of phytoplankton. J Fish Res Bd Can 32(11):2189–2195. doi: 10.1139/f75-257 CrossRefGoogle Scholar
  70. Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157(12):2667–2676. doi: 10.1139/f75-257 CrossRefGoogle Scholar
  71. Thor P, Dupont S (2015) Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Chang Biol 21(6):2261–2271CrossRefGoogle Scholar
  72. Tremblay N (2014) Tolerance mechanisms and responses of krill species of different latitudes to oxygen minimum zones. Dissertation, Universität Bremen, Bremen, GermanyGoogle Scholar
  73. Vaulot D, Chisholm SW (1987) A simple model of the growth of phytoplankton populations in light/dark cycles. J Plankton Res 9(2):345–366. doi: 10.1093/plankt/9.2.345 CrossRefGoogle Scholar
  74. Wheatly MG, Henry RP (1992) Extracellular and intracellular acid-base regulation in crustaceans. J Exp Zool 263(2):127–142. doi: 10.1002/jez.1402630204 CrossRefGoogle Scholar
  75. Whiteley NM (2011) Physiological and ecological responses of crustaceans to ocean acidification. Mar Ecol Prog Ser 430:257–271. doi: 10.3354/meps09185 CrossRefGoogle Scholar
  76. Whiteley NM, Scott JL, Breeze SJ, McCann L (2001) Effects of water salinity on acid-base balance in decapod crustaceans. J Exp Biol 204(5):1003–1011Google Scholar
  77. Widdicombe S, Spicer JI (2008) Predicting the impact of ocean acidification on benthic biodiversity: what can animal physiology tell us? J Exp Mar Biol Ecol 366(1):187–197. doi: 10.1016/j.jembe.2008.07.024 CrossRefGoogle Scholar
  78. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc 275(1644):1767–1773. doi: 10.1098/rspb.2008.0343 CrossRefGoogle Scholar
  79. Zervoudaki S, Frangoulis C, Giannoudi L, Krasakopoulou E (2013) Effects of low pH and raised temperature on egg production, hatching and metabolic rates of a Mediterranean copepod species (Acartia clausi) under oligotrophic conditions. Medit Mar Sci. doi: 10.12681/mms.553 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyUniversity of California Santa CruzSanta CruzUSA
  2. 2.Institute of Marine SciencesUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations