Marine Biology

, 163:205 | Cite as

Transcriptome analysis deciphers evolutionary mechanisms underlying genetic differentiation between coastal and offshore anchovy populations in the Bay of Biscay

  • Iratxe MontesEmail author
  • Iratxe Zarraonaindia
  • Mikel Iriondo
  • W. Stewart Grant
  • Carmen Manzano
  • Unai Cotano
  • Darrell Conklin
  • Xabier Irigoien
  • Andone EstonbaEmail author
Original paper


Morphometry and otolith microchemistry point to the existence of two populations of the European anchovy (Engraulis encrasicolus) in the Bay of Biscay: one in open seawaters, and a yet unidentified population in coastal waters. To test this hypothesis, we assembled a large number of samples from the region, including 587 juveniles and spawning adults from offshore and coastal waters, and 264 fish from other locations covering most of the species’ European range. These samples were genotyped for 456 exonic SNPs that provide a robust way to decipher adaptive processes in these populations. Two genetically differentiated populations of anchovy inhabit the Bay of Biscay with different population dynamics: (1) a large offshore population associated with marine waters included in the wide-shelf group, and (2) a coastal metapopulation adapted to estuarine environments in the Bay of Biscay and North Sea included in the narrow-shelf group. Transcriptome analysis identified neutral and adaptive evolutionary processes underlying differentiation between these populations. Reduced gene flow between offshore and coastal populations in the Bay of Biscay appears to result from divergence between two previously isolated gene pools adapted to contrasting habitats and now in secondary contact. Eleven molecular markers appear to mark divergent selection between the ecotypes, and a majority of these markers are associated with salinity variability. Ecotype differences at two outlier genes, TSSK6 and basigin, may hinder gamete compatibility between the ecotypes and reinforce reproductive isolation. Additionally, possible convergent evolution between offshore and coastal populations in the Bay of Biscay has been detected for the syntaxin1B-otoferlin gene system, which is involved in the control of larval buoyancy. Further study of exonic markers opens the possibility of understanding the mechanisms of adaptive divergence between European anchovy populations.


Reproductive Isolation Coastal Population Adaptive Landscape Genetic Entity Gironde Estuary 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Aitor Albaina for deep discussions of our results and 2 reviewers for their constructive comments, which have helped to improve the article. Gary R. Carvalho and Dave Bembo provided the sample 17. Kristina Raab and Jeroen van der Kooij provided the sample from the IJsselmeer (sample 25). Cesar Vilas provided the two samples from Guadalquivir (samples 27 and 28). Jérôme Goudet kindly assisted with a beta version of Fstat 2.9.4 to handle large datasets. Finally, the authors thank for technical and human support provided by Sequencing and Genotyping SGIker unit of UPV/EHU and European funding (ERDF and ESF).


This study was funded by the Ministry of Science and Research of the Government of Spain through ECOGENBAY (MICINN CTM2009-13570-C02-02) and by a Research Grant (3571/2008) from the University of the Basque Country (UPV/EHU). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors of this study declare that they have no conflict of interest.

Ethical approval

All applicable international, national and institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2016_2979_MOESM1_ESM.pdf (42 kb)
Supplementary material 1 (PDF 43 kb)
227_2016_2979_MOESM2_ESM.pdf (93 kb)
Supplementary material 2 (PDF 94 kb)
227_2016_2979_MOESM3_ESM.pdf (75 kb)
Supplementary material 3 (PDF 76 kb)
227_2016_2979_MOESM4_ESM.pdf (68 kb)
Supplementary material 4 (PDF 68 kb)
227_2016_2979_MOESM5_ESM.pdf (228 kb)
Supplementary material 5 (PDF 228 kb)
227_2016_2979_MOESM6_ESM.pdf (162 kb)
Supplementary material 6 (PDF 162 kb)
227_2016_2979_MOESM7_ESM.pdf (71 kb)
Supplementary material 7 (PDF 72 kb)
227_2016_2979_MOESM8_ESM.pdf (90 kb)
Supplementary material 8 (PDF 91 kb)


  1. Aldanondo N, Cotano U, Etxebeste E, Irigoien X et al (2008) Validation of daily increments deposition in the otoliths of European anchovy larvae (Engraulis encrasicolus L.) reared under different temperature conditions. Fish Res 93:257–264. doi: 10.1016/j.fishres.2008.04.012 CrossRefGoogle Scholar
  2. Aldanondo N, Cotano U, Tiepolo M, Boyra G et al (2010) Growth and movement patterns of early juvenile European anchovy (Engraulis encrasicolus L.) in the Bay of Biscay based on otolith microstructure and chemistry. Fish Oceanogr 19:196–208. doi: 10.1111/j.1365-2419.2010.00537.x CrossRefGoogle Scholar
  3. Bembo DG, Carvalho GR, Cingolani N, Arneri E et al (1996a) Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters. Mar Biol 126:529–538. doi: 10.1007/BF00354635 CrossRefGoogle Scholar
  4. Bembo DG, Carvalho GR, Cingolani N, Pitcher TJ (1996b) Electrophoretic analysis of stock structure in northern Mediterranean anchovies, Engraulis encrasicolus. ICES J Mar Sci 53:115–128. doi: 10.1006/jmsc.1996.0011 CrossRefGoogle Scholar
  5. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300. doi: 10.2307/2346101 Google Scholar
  6. Bonnet E, Van de Peer Y (2002) zt:a software tool for simple and partial Mantel tests. J Stat Softw 7:1–12CrossRefGoogle Scholar
  7. Borrell YJ, Piñera JA, Sánchez Prado JA, Blanco G (2012) Mitochondrial DNA and microsatellite genetic differentiation in the European anchovy Engraulis encrasicolus L. ICES J Mar Sci 69:1357–1371. doi: 10.1093/icesjms/fss129 CrossRefGoogle Scholar
  8. Borsa P (2002) Allozyme, mitochondrial–DNA, and morphometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biol J Linn Soc 75:261–269. doi: 10.1046/j.1095-8312.2002.00018.x Google Scholar
  9. Borsa P, Collet A, Durand JD (2004) Nuclear–DNA markers confirm the presence of two anchovy species in the Mediterranean. C R Biol 327:1113–1123. doi: 10.1016/j.crvi.2004.09.003 CrossRefGoogle Scholar
  10. Bouchenak-Khelladi Y, Durand JD, Magoulas A, Borsa P (2008) Geographic structure of European anchovy: a nuclear–DNA study. J Sea Res 59:269–278. doi: 10.1016/j.seares.2008.03.001 CrossRefGoogle Scholar
  11. Braak CJF, Smilauer P (2002) CANOCO Reference Manual and CanoDraw for Windows user’s guide: software for Canonical Community Ordination (Version 4.5). Microcomputer PowerGoogle Scholar
  12. Cermeño P, Uriarte A, De Munguía AM, Morales-Nin B (2003) Validation of daily increment formation in otoliths of juvenile and adult European anchovy. J Fish Biol 62:679–691. doi: 10.1046/j.1095-8649.2003.00056.x CrossRefGoogle Scholar
  13. Chatterjee P, Padmanarayana M, Abdullah N, Holman CL, LaDu J, Tanguay RL, Johnson CP (2015) Otoferlin deficiency in zebrafish results in defects in balance and hearing: rescue of the balance and hearing phenotype with full-length and truncated forms of mouse otoferlin. Mol Cell Biol 35(6):1043–1054. doi: 10.1128/MCB.01439-14 CrossRefGoogle Scholar
  14. Chust G, Albaina A, Aranburu A, Borja A et al (2013) Connectivity, neutral theories and the assessment of species vulnerability to global change in temperate estuaries. Estuar Coast Shelf S 131:52–63. doi: 10.5281/zenodo.8501 CrossRefGoogle Scholar
  15. Conesa A, Götz S, García-Gómez JM, Terol J et al (2005) Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi: 10.1093/bioinformatics/bti610 CrossRefGoogle Scholar
  16. de Villemereuil P, Gaggiotti OE (2015) A new FST-based method to uncover local adaptation using environmental variables. Method Ecol Evol 6:1248–1258. doi: 10.1111/2041-210X.12418 CrossRefGoogle Scholar
  17. Dulzetto F (1947) L’Engraulis dei laghi di Ganzirri e del Faro. Mem Soc It Sci XL 3(26):5–28Google Scholar
  18. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  19. Falush D, Stephens M, Pritchard J (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7(4):574–578. doi: 10.1111/j.1471-8286.2007.01758.x CrossRefGoogle Scholar
  20. Feder JL, Egan SP, Nosil P (2012) The genomics of speciation-with-gene-flow. Trends Genet 28:342–350. doi: 10.1016/j.tig.2012.03.009) CrossRefGoogle Scholar
  21. Foll M, Gaggiotti OE (2008) A genome scan method to identify selected loci appropriate for both dominant and codominant markers:a Bayesian perspective. Genetics 180:977–993. doi: 10.1534/genetics.108.092221 CrossRefGoogle Scholar
  22. Ganias K (2014) Biology and ecology of sardines and anchovies. CRC Press, Boca Raton. ISBN: 978-1-4822-2854-0Google Scholar
  23. Grant WS (2005) A second look at mitochondrial DNA variability in European anchovy (Engraulis encrasicolus): assessing models of population structure and the Black Sea isolation hypothesis. Genetica 125:293–309. doi: 10.1007/S6709-005-0717-z CrossRefGoogle Scholar
  24. Guerault D, Avrilla J (1978) L’anchois du Golfe de Gascogne. Mise en évidence de l’existance de deux populations et bilan de nos connaissances sur la biologie de l’espèce. ICES CM 1978/H:24Google Scholar
  25. Harada Y, Yoshida K, Kawano N, Miyado K (2013) Critical role of exosomes in sperm-egg fusion and virus-induced cell-cell fusion. Reprod Med Biol 12(4):117–126. doi: 10.1007/s12522-013-0152-2 CrossRefGoogle Scholar
  26. ICES (2008) Report of the Workshop on Small Pelagics (Sardina pilchardus, Engraulis encrasicolus) maturity stages (WKSPMAT), 10–14 November 2008, Mazara del Vallo, Italy. ICES CM 2008/ACOM:40Google Scholar
  27. Kada O, Abdellaoui S, Ramdani M, Nachit D (2009) Contribution à l’identification et à la caractérisation biologique et dynamique de l’anchois de la lagune de Nador (Maroc). Bull Inst Sci (Rabat), Sect Sci de la Vie 31:91–98Google Scholar
  28. Karahan A, Borsa P, Gucu AC, Kandemir I et al (2014) Geometric morphometrics, Fourier analysis of otolith shape, and nuclear-DNA markers distinguish two anchovy species (Engraulis spp.) in the Eastern Mediterranean Sea. Fish Res 159:45–55. doi: 10.1016/j.fishres.2014.05.009 CrossRefGoogle Scholar
  29. Kinne O, Kinne EM (1962) Rates of development in embryos of cyprinodont fish exposed to different temperature–salinity–oxygen conditions. Can J Zool 40:231–253. doi: 10.1139/z62-025 CrossRefGoogle Scholar
  30. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15(5):1179–1191. doi: 10.1111/1755-0998.12387 CrossRefGoogle Scholar
  31. Langella O (2002) POPULATIONS 1.2.28. Population genetic software (individuals or populations distances, phylogenetic trees). Available from
  32. Le Moan A, Gagnaire P-A, Bonhomme F (2016) Parallel genetic divergence among coastal-marine ecotype pairs of European anchovy explained by differential introgression after secondary contact. Mol Ecol 13:3187–3202. doi: 10.1111/mec.13627 CrossRefGoogle Scholar
  33. Magoulas A, Tsimenides N, Zourus E (1996) Mitochondrial DNA phylogeny and reconstruction of the population history of a species:the case of the European anchovy (Engraulis encrasicolus). Mol Biol Evol 13:178–190CrossRefGoogle Scholar
  34. Magoulas A, Castilho R, Caetano S, Marcato S, Partanello T (2006) Mitochondrial DNA reveals a mosaic pattern of phylogeographical structure in Atlantic and Mediterranean populations of anchovy (Engraulis encrasicolus). Mol Phylogenet Evol 39:734–746. doi: 10.1016/j.ympev.2006.01.016 CrossRefGoogle Scholar
  35. Messaoud H, Bouriga N, Daly Yahia MN, Boumaiza M et al (2011) Discrimination de trois populations d’anchois du genre Engraulis (Clupeiforme, Engraulidae) des côtes Tunisiennes par analyse de forme des otolithes. Bull Inst Natl Sci Tech Mer (Salambô) 38:21–27Google Scholar
  36. Molecular Ecology Resources Primer Development Consortium, Abreu AG, Albaina A, Alpermann TJ et al (2012) Permanent genetic resources added to molecular ecology resources database 1 October 2011–30 November 2011. Mol Ecol Resour 12:374–376. doi: 10.1111/j.1755-0998.2011.03109.x CrossRefGoogle Scholar
  37. Montes I, Conklin D, Albaina A, Creer S et al (2013) SNP discovery in European Anchovy (Engraulis encrasicolus, L) by high-throughput transcriptome and genome sequencing. PLoS One 8:e70051. doi: 10.1371/journal.pone.0070051 CrossRefGoogle Scholar
  38. Montes I, Iriondo M, Manzano C, Santos M, Conklin D, Carvalho GR, Irigoien X, Estonba A (2016) No loss of genetic diversity in the exploited and recently collapsed population of Bay of Biscay anchovy (Engraulis encrasicolus, L). Mar Biol 163:98. doi: 10.1007/s00227-016-2866-2 CrossRefGoogle Scholar
  39. Motos L, Uriarte A, Valencia V (1996) The spawning environment of the Bay of Biscay anchovy (Engraulis encrasicolus L.). Sci Mar 60(Suppl. 2):117–140Google Scholar
  40. Oden NL, Sokal RR (1992) An investigation of 3–matrix permutation tests. J Classif 9:275–290. doi: 10.1007/BF02621410 CrossRefGoogle Scholar
  41. Oueslati S, Fadhlaoui-Zid K, Kada O, Augé MT et al (2014) Existence of two widespread semi-isolated genetic entities within Mediterranean anchovies. Mar Biol 161:1063–1071. doi: 10.1007/s00227-014-2399-5 CrossRefGoogle Scholar
  42. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. Annu Rev Ecol Syst 25:547–572. doi: 10.1146/ CrossRefGoogle Scholar
  43. Petit E, Balloux F, Goudet J (2001) Sex-biased dispersal in a migratory bat: a characterization using sex-specific demographic parameters. Evolution 55:635–640. doi: 10.1111/j.1365-294X.2008.04067.x CrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. doi: 10.1111/j.1471-8286.2007.01758.x Google Scholar
  45. Quignard JP, Hamdouni T, Zaouali J (1973) Donnees preliminaires sur les caracteres biometriques des anchois Engraulis encrasicolus (Linné, 1758) des cotes de Tunisie et du Lac Ichkeul. Rev Trav Inst Pêch Marit 37:191–196Google Scholar
  46. Ramakrishnan NA, Drescher MJ, Drescher DG (2009) Direct interaction of otoferlin with syntaxin 1A, SNAP-25, and the L-type voltage-gated calcium channel Cav13. J Biol Chem 284:1364–1372. doi: 10.1074/jbc.M803605200 CrossRefGoogle Scholar
  47. Reynolds J, Weir BS, Cockerham CC (1983) Estimation of the coancestry coefficient: basis for a short-term genetic distance. Genetics 105:767–779Google Scholar
  48. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  49. Rowe S, Hutchings JA (2003) Mating systems and the conservation of commercially exploited marine fish. TREE 18:567–572Google Scholar
  50. Ruggeri P, Splendiani A, Di Muri C, Floravanti T, Santojanni A, Leonori I, De Felice A et al (2016) Coupling demographic and genetic variability from archived collections of European anchovy (Engraulis encrasicolus). PLoS One 11(3):e0151507. doi: 10.1371/journal.pone.0151507 CrossRefGoogle Scholar
  51. Santiago J, Eltink A (1988) Distribution and abundance of anchovy eggs in the Bay of Biscay in May 1987 in comparison to 1983 and 1986. ICES CM 1988/H:9Google Scholar
  52. Santiago J, Sanz A (1992) Egg production estimates of the Bay of Biscay anchovy, Engraulis encrasicholus (L.), spawning stock in 1987 and 1988 (Estimaciones de la producción de huevos del stock reproductor de anchoa, Engraulis encrasicholus (L.), del golfo de Vizcaya en 1987 y 1988). Bol Inst Esp Oceanogr 8:225–230Google Scholar
  53. Sanz N, Garcia-Marín JL, Viñas J, Roldán M et al (2008) Spawning groups of European anchovy: population structure and management implications. ICES J Mar Sci 65:1625–1644. doi: 10.1093/icesjms/fsn128 CrossRefGoogle Scholar
  54. Saxena DK, Toshimori K (2004) Molecular modifications of MC31/CE9, a sperm surface molecule, during sperm capacitation and the acrosome reaction in the rat: is MC31/CE9 required for fertilization? Biol Reprod 70(4):993–1000CrossRefGoogle Scholar
  55. Sosnik J, Miranda PV, Spiridonov NA, Yoon SY et al (2009) Tssk6 is required for Izumo relocalization and gamete fusion in the mouse. J Cell Sci 122(Pt 15):2741–2749. doi: 10.1242/jcs.047225 CrossRefGoogle Scholar
  56. Viñas J, Sanz N, Peñarrubia L, Araguas RM et al (2014) Genetic population structure of European anchovy in the Mediterranean Sea and the Northeast Atlantic Ocean using sequence analysis of the mitochondrial DNA control region. ICES J Mar Sci 71(2):391–397. doi: 10.1093/icesjms/fst132 CrossRefGoogle Scholar
  57. Warnes G, Gorjanc G, Leisch F, Man M (2012) genetics: population Genetics. R package version 1.3.8. Accessed 20 May 2015
  58. Weir BS, Cockerham CC (1984) Estimating F–statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  59. Woolley LD, Qin JG (2010) Swimbladder inflation and its implication to the culture of marine finfish larvae. Rev Aquacult 2(4):181–190. doi: 10.1111/j.1753-5131.2010.01035.x CrossRefGoogle Scholar
  60. Zarraonaindia I, Pardo MA, Iriondo M, Manzano C et al (2009) Microsatellite variability in European anchovy (Engraulis encrasicolus) calls for further investigation of its genetic structure and biogeography. ICES J Mar Sci 66:2176–2182. doi: 10.1093/icesjms/fsp187 CrossRefGoogle Scholar
  61. Zarraonaindia I, Iriondo M, Albaina A, Pardo MA et al (2012) Multiple SNP markers reveal fine scale population and deep phylogeographic structure in European anchovy (Engraulis encrasicolus L.). PLoS One 7:e42201. doi: 10.1371/journal.pone.0042201 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque Country (UPV/EHU)LeioaSpain
  2. 2.Commercial Fisheries Division, Alaska Department of Fish and GameAnchorageUSA
  3. 3.Marine Research DivisionAZTI-TecnaliaPasaiaSpain
  4. 4.Department of Computer Science and Artificial IntelligenceUniversity of the Basque Country UPV/EHUSan SebastiánSpain
  5. 5.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  6. 6.Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations