Skip to main content

Advertisement

Log in

Microplastics on beaches: ingestion and behavioural consequences for beachhoppers

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Microplastics are ubiquitous in the marine environment worldwide, and may cause a physical and chemical risk to marine organisms. Their small size makes them bioavailable to a range of organisms with evidence of ingestion at all levels of the marine ecosystem. Despite an increasing body of research into microplastics, few studies have explored how consumption changes complex behaviours such as predator avoidance and social interactions. Pollutant exposure can result in alterations in behaviour that not only leads to sub optimal conditions for individual organisms but may also serve as a warning sign for wider effects on a system. This research assessed the impacts of microplastics on the ecology of coastal biota using beachhoppers (Platorchestia smithi) as model organisms. We exposed beachhoppers to marine-contaminated microplastics to understand effects on survival and behaviour. Beachhoppers readily ingested microplastics, and there was evidence for accumulation of microplastics within the organisms. Exposure tests showed that microplastic consumption can affect beachhopper survival. Individuals also displayed reduced jump height and an increase in weight, however, there was no significant difference in time taken to relocate shelter post disturbance. Overall, these results show that short-term ingestion of microplastics have an impact on survival and behaviour of P. smithi. A reduction in the capacity for beachhoppers to survive and function may have flow on effects to their local environment and higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi:10.1016/j.marpolbul.2011.05.030

    Article  CAS  Google Scholar 

  • Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34:2564–2572

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. doi:10.1016/j.envpol.2014.12.021

    Article  CAS  Google Scholar 

  • Ayari A, Jelassi R, Ghemari C, Nasri-Ammar K (2015a) Effect of age, sex, and mutual interaction on the locomotor behavior of Orchestia gammarellus in the supralittoral zone of Ghar El Melh lagoon (Bizerte, Tunisia). Biol Rhythm Res 46:703–714. doi:10.1080/09291016.2015.1048950

    Article  Google Scholar 

  • Ayari A, Jelassi R, Ghemari C, Nasri-Ammar K (2015b) Locomotor activity patterns of two sympatric species Orchestia montagui and Orchestia gammarellus (Crustacea, Amphipoda). Biol Rhythm Res 46:863–871. doi:10.1080/09291016.2015.1060677

    Article  Google Scholar 

  • Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23. doi:10.1016/j.envpol.2013.10.007

    Article  CAS  Google Scholar 

  • Beermann J, Dick JTA, Thiel M (2015) Social recognition in amphipods: an overview. In: Aquiloni L, Tricarico E (eds) Social recognition in invertebrates the knowns and the unknowns. Springer, Berlin, pp 85–100. doi:10.1007/978-3-319-17599-7_6

    Chapter  Google Scholar 

  • Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2012) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina. Environ Sci Technol 47:593–600

    Article  Google Scholar 

  • Besseling E, Wang B, Lurling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343. doi:10.1021/es503001d

    Article  CAS  Google Scholar 

  • Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278. doi:10.1016/j.marpolbul.2010.08.007

    Article  CAS  Google Scholar 

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi:10.1016/j.tree.2008.10.008

    Article  Google Scholar 

  • Bregazzi P, Naylor E (1972) The locomotor activity rhythm of Talitrus saltator (Montagu)(Crustacea, Amphipoda). J Exp Biol 57:375–391

    Google Scholar 

  • Browne MA (2015) Sources and pathways of microplastics to habitats. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Litter, pp 229–244. doi:10.1007/978-3-319-16510-3_9

    Chapter  Google Scholar 

  • Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008a) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. doi:10.1021/es800249a

    Article  CAS  Google Scholar 

  • Browne MA, Galloway T, Thompson R (2008b) Microplastic—an emerging contaminant of potential concern? Integr Environ Assess Manag 3:559–561

    Article  Google Scholar 

  • Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. doi:10.1021/es201811s

    Article  CAS  Google Scholar 

  • Carson HS, Colbert SL, Kaylor MJ, McDermid KJ (2011) Small plastic debris changes water movement and heat transfer through beach sediments. Mar Pollut Bull 62:1708–1713. doi:10.1016/j.marpolbul.2011.05.032

    Article  CAS  Google Scholar 

  • Chua E, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa. Environ Sci Technol 48:8127–8134. doi:10.1021/es405717z

    Article  CAS  Google Scholar 

  • Codling EA, Pitchford JW, Simpson SD (2007) Group navigation and the “many-wrongs principle” in models of animal movement. Ecology 88:1864–1870. doi:10.1890/06-0854.1

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. doi:10.1016/j.marpolbul.2011.09.025

    Article  CAS  Google Scholar 

  • Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environmental science & technology 47: 6646–6655. http://pubs.acs.org/doi/abs/10.1021/es400663f

  • Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137

    Article  CAS  Google Scholar 

  • Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. doi:10.3354/meps295001

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58(Supplement):25–40. doi:10.1016/S0272-7714(03)00045-3

    Article  Google Scholar 

  • Dugan JE, Hubbard DM, Page HM, Schimel JP (2011) Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuaries Coasts 34:839–850. doi:10.1007/s12237-011-9375-9

    Article  CAS  Google Scholar 

  • Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114. doi:10.1016/j.marpolbul.2005.04.030

    Article  CAS  Google Scholar 

  • Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315. doi:10.1021/es3027105

    Article  CAS  Google Scholar 

  • Eriksson C, Burton H (2003) Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO: a Journal of the Human. Environment 32:380–384. doi:10.1579/0044-7447-32.6.380

    Google Scholar 

  • Fanini L, Lowry J (2014) Coastal talitrids and connectivity between beaches: a behavioural test. J Exp Mar Biol Ecol 457:120–127. doi:10.1016/j.jembe.2014.04.010

    Article  Google Scholar 

  • Frias J, Sobral P, Ferreira A (2010) Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 60:1988–1992. doi:10.1016/j.marpolbul.2010.07.030

    Article  CAS  Google Scholar 

  • Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res 19:1296–1304. doi:10.1007/s11356-011-0655-5

    Article  CAS  Google Scholar 

  • GESAMP (2010) Proceedings of the GESAMP international workshop on plastic particles as a vector in transport0069 ng persistent, bio-accumulating and toxic substances in the oceans. GESAMP Rep Stud, vol. 82

  • Gherardi F, Aquiloni L, Tricarico E (2012) Revisiting social recognition systems in invertebrates. Animal cognition 15:745–762. doi:10.1007/s10071-012-0513-y

    Article  Google Scholar 

  • Graham ER, Thompson JT (2009) Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29. doi:10.1016/j.jembe.2008.09.007

    Article  Google Scholar 

  • Gonçalves SC, Marques JC (2011) The effects of season and wrack subsidy on the community functioning of exposed sandy beaches. Estuar Coast Shelf Sci 95:165–177

    Article  Google Scholar 

  • Gonçalves R, Scholze M, Ferreira AM, Martins M, Correia AD (2008) The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ Res 108:205–213

    Article  Google Scholar 

  • Gonçalves SC, Anastácio PM, Marques JC (2013) Talitrid and Tylid crustaceans bioecology as a tool to monitor and assess sandy beaches’ ecological quality condition. Ecol Ind 29:549–557

    Article  Google Scholar 

  • Griffiths CL, Stenton-Dozey JME, Koop K (1983) Kelp Wrack and the flow of energy through a Sandy beach ecosystem. In: McLachlan A, Erasmus T (eds) sandy beaches as ecosystems: based on the proceedings of the first international symposium on sandy beaches, held in Port Elizabeth, South Africa, 17–21 January 1983. Springer, Dordrecht, pp 547–556. doi:10.1007/978-94-017-2938-3_42

    Chapter  Google Scholar 

  • Hämer J, Gutow L, Köhler A, Saborowski R (2014) Fate of Microplastics in the Marine Isopod Idotea emarginata. Environ Sci Technol 48:13451–13458

    Article  Google Scholar 

  • Hawlena D, Kress H, Dufresne ER, Schmitz OJ (2011) Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Funct Ecol 25:279–288

    Article  Google Scholar 

  • Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692. doi:10.1016/j.marpolbul.2011.06.004

    Article  CAS  Google Scholar 

  • Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48:1638–1645. doi:10.1021/es404295e

    Article  CAS  Google Scholar 

  • Koch H (1989) The effect of tidal inundation on the activity and behavior of the supralittoral talitrid amphipod Traskorchestia traskiana (Stimpson, 1857). Crustaceana 57:295–303. doi:10.1163/156854089X00635

    Article  Google Scholar 

  • Koelmans AA (2013) Plastic as a Carrier of POPs to Aquatic Organisms: a Model Analysis. Environ Sci Technol 47:7812–7820. doi:10.1021/es401169n

    Article  CAS  Google Scholar 

  • Koelmans AA (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54. doi:10.1016/j.envpol.2013.12.013

    Article  CAS  Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326. doi:10.1021/acs.est.5b06069

    Article  CAS  Google Scholar 

  • Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:2. doi:10.1126/science.1254065

    Article  Google Scholar 

  • Lee K-W, Shim WJ, Kwon OY, Kang J-H (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283

    Article  CAS  Google Scholar 

  • Lithner D, Damberg J, Dave G, Larsson Å (2009) Leachates from plastic consumer products–Screening for toxicity with Daphnia magna. Chemosphere 74:1195–1200. doi:10.1016/j.chemosphere.2008.11.022

    Article  CAS  Google Scholar 

  • Lowry J (2012) Talitrid amphipods from ocean beaches along the New South Wales coast of Australia (Amphipoda, Talitridae). Zootaxa 3575:1–26

    Google Scholar 

  • McCready S, Birch GF, Long ER (2006) Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity–A chemical dataset for evaluating sediment quality guidelines. Environ Inl 32:455–465. doi:10.1016/j.envint.2005.10.006

    Article  Google Scholar 

  • McGinley RH, Prenter J, Taylor PW (2013) Whole-organism performance in a jumping spider, Servaea incana (Araneae: salticidae): links with morphology and between performance traits. Biol J Linn Soc 110:644–657

    Article  Google Scholar 

  • Mizukawa K, Takada H, Takeuchi I, Ikemoto T, Omori K, Tsuchiya K (2009) Bioconcentration and biomagnification of polybrominated diphenyl ethers (PBDEs) through lower-trophic-level coastal marine food web. Mar Pollut Bull 58:1217–1224. doi:10.1016/j.marpolbul.2009.03.008

    Article  CAS  Google Scholar 

  • Morritt D (1998) Hygrokinetic responses of talitrid amphipods. J Crustac Biol 18:25–35. doi:10.2307/1549517

    Article  Google Scholar 

  • Morritt D, Spicer JI (1998) The physiological ecology of talitrid amphipods: an update. Can J Zool 76:1965–1982. doi:10.1139/z98-168

    Article  Google Scholar 

  • Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217. doi:10.1016/j.marpolbul.2011.03.032

    Article  CAS  Google Scholar 

  • Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A (2009) International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446. doi:10.1016/j.marpolbul.2009.06.014

    Article  CAS  Google Scholar 

  • Oulton LJ, Taylor MP, Hose GC, Brown C (2014) Sublethal toxicity of untreated and treated stormwater Zn concentrations on the foraging behaviour of Paratya australiensis (Decapoda: atyidae). Ecotoxicology 23:1022–1029. doi:10.1007/s10646-014-1246-2

    Article  CAS  Google Scholar 

  • Pinheiro J BD, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–117

  • Poore AG, Gallagher KM (2013) Strong consequences of diet choice in a talitrid amphipod consuming seagrass and algal wrack. Hydrobiologia 701:117–127

    Article  CAS  Google Scholar 

  • Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263. doi:10.1038/srep03263

    Article  Google Scholar 

  • Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A: Mol Integr Physiol 146:661–671. doi:10.1016/j.cbpa.2006.04.030

    Article  Google Scholar 

  • Ryan P, Connell A, Gardner B (1988) Plastic ingestion and PCBs in seabirds: is there a relationship? Mar Pollut Bull 19:174–176. doi:10.1016/0025-326X(88)90674-1

    Article  CAS  Google Scholar 

  • Scapini F (2006) Keynote papers on sandhopper orientation and navigation. Mar Freshw Behav Physiol 39:73–85. doi:10.1080/10236240600563412

    Article  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi:10.1016/j.aquatox.2004.03.016

    Article  CAS  Google Scholar 

  • Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102:95–101. doi:10.1016/j.marpolbul.2015.11.053

    Article  Google Scholar 

  • Simons AM (2004) Many wrongs: the advantage of group navigation. Trends Ecol Evol 19:453–455. doi:10.1016/j.tree.2004.07.001

    Article  Google Scholar 

  • Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764. doi:10.1021/es071737s

    Article  CAS  Google Scholar 

  • Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philosoph Trans R Soc Lond Ser B Biol Sci 364:2027–2045. doi:10.1098/rstb.2008.0284

    Article  CAS  Google Scholar 

  • Thiel M (2011) Chemical communication in peracarid crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 199–218. doi:10.1007/978-0-387-77101-4_10

    Google Scholar 

  • Thompson RC (2015) Microplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine Anthropogenic Litter. Springer, Cham, pp 185–200. doi:10.1007/978-3-319-16510-3_7

    Chapter  Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304:838. doi:10.1126/science.1094559

    Article  CAS  Google Scholar 

  • Turra A, Manzano AB, Dias RJS, Mahiques MM, Barbosa L, Balthazar-Silva D, Moreira FT (2014) Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Scientific reports 4: 4435. http://www.nature.com/articles/srep04435

  • Ugolini A (1996) Jumping and sun compass in sandhoppers: an antipredator interpretation. Ethol Ecol Evol 8:97–106. doi:10.1080/08927014.1996.9522937

    Article  Google Scholar 

  • Ugolini A, Ungherese G, Ciofini M, Lapucci A, Camaiti M (2013) Microplastic debris in sandhoppers. Estuar Coast Shelf Sci 129:19–22. doi:10.1016/j.ecss.2013.05.026

    Article  CAS  Google Scholar 

  • Ungherese G, Ugolini A (2009) Sandhopper solar orientation as a behavioural biomarker of trace metals contamination. Environ Pollut 157:1360–1364. doi:10.1016/j.envpol.2008.11.038

    Article  CAS  Google Scholar 

  • Ungherese G, Cincinelli A, Martellini T, Ugolini A (2012) PBDEs in the supralittoral environment: the sandhopper Talitrus saltator (Montagu) as biomonitor? Chemosphere 86:223–227. doi:10.1016/j.chemosphere.2011.09.029

    Article  CAS  Google Scholar 

  • Watts AJ, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, Galloway TS (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48:8823–8830

    Article  CAS  Google Scholar 

  • Wegner A, Besseling E, Foekema E, Kamermans P, Koelmans A (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis). Environ Toxicol Chem 31:2490–2497

    Article  CAS  Google Scholar 

  • Weis J (2014) Physiological. Springer, Netherlands, Developmental and Behavioral Effects of Marine Pollution. doi:10.1007/978-94-007-6949-6

    Google Scholar 

  • Weiss H, Wilhems A, Mills N, Scotchmer J, Hall P, Lind K, Brekke T (2000) The Norwegian industry guide to organic geochemical analyses [online]. http://www.npd.no/engelsk/nigoga/default.htm. pp. 102

  • Wildish DJ (1988) Ecology and natural history of aquatic Talitroidea. Can J Zool 66:2340–2359. doi:10.1139/z88-349

    Article  Google Scholar 

  • Wong BB, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. doi:10.1093/beheco/aru183

    Article  Google Scholar 

  • Wright SL, Rowe D, Thompson RC, Galloway TS (2013a) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033. doi:10.1016/j.cub.2013.10.068

    Article  CAS  Google Scholar 

  • Wright SL, Thompson RC, Galloway TS (2013b) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. doi:10.1016/j.envpol.2013.02.031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members and interns of the MEG and BEEF labs for field and laboratory assistance, to Carlita Foster-Hogg for work on beachhopper weight analysis, Sarah Houlhan for undertaking GC MS analysis of microplastics and beachhoppers, and to Alistair Poore for advice on beachhopper husbandry. Beachhopper collections were conducted under NSW Fisheries Scientific Collection Permit number P14/0032-1.1. This is contribution #189 from the Sydney Institute of Marine Science (SIMS).

Funding

This research was funded by the Department of Biological Sciences at Macquarie University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise Tosetto.

Ethics declarations

Conflict of interest

All the authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with vertebrate animals performed by any of the authors.

Additional information

Responsible Editor: M. Huettel.

Reviewed by undisclosed experts.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 556 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosetto, L., Brown, C. & Williamson, J.E. Microplastics on beaches: ingestion and behavioural consequences for beachhoppers. Mar Biol 163, 199 (2016). https://doi.org/10.1007/s00227-016-2973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2973-0

Keywords

Navigation