Marine Biology

, 163:199 | Cite as

Microplastics on beaches: ingestion and behavioural consequences for beachhoppers

  • Louise TosettoEmail author
  • Culum Brown
  • Jane E. Williamson
Original paper


Microplastics are ubiquitous in the marine environment worldwide, and may cause a physical and chemical risk to marine organisms. Their small size makes them bioavailable to a range of organisms with evidence of ingestion at all levels of the marine ecosystem. Despite an increasing body of research into microplastics, few studies have explored how consumption changes complex behaviours such as predator avoidance and social interactions. Pollutant exposure can result in alterations in behaviour that not only leads to sub optimal conditions for individual organisms but may also serve as a warning sign for wider effects on a system. This research assessed the impacts of microplastics on the ecology of coastal biota using beachhoppers (Platorchestia smithi) as model organisms. We exposed beachhoppers to marine-contaminated microplastics to understand effects on survival and behaviour. Beachhoppers readily ingested microplastics, and there was evidence for accumulation of microplastics within the organisms. Exposure tests showed that microplastic consumption can affect beachhopper survival. Individuals also displayed reduced jump height and an increase in weight, however, there was no significant difference in time taken to relocate shelter post disturbance. Overall, these results show that short-term ingestion of microplastics have an impact on survival and behaviour of P. smithi. A reduction in the capacity for beachhoppers to survive and function may have flow on effects to their local environment and higher trophic levels.


PAHs PCBs Exposure Test Jump Height Jump Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank the members and interns of the MEG and BEEF labs for field and laboratory assistance, to Carlita Foster-Hogg for work on beachhopper weight analysis, Sarah Houlhan for undertaking GC MS analysis of microplastics and beachhoppers, and to Alistair Poore for advice on beachhopper husbandry. Beachhopper collections were conducted under NSW Fisheries Scientific Collection Permit number P14/0032-1.1. This is contribution #189 from the Sydney Institute of Marine Science (SIMS).


This research was funded by the Department of Biological Sciences at Macquarie University.

Compliance with ethical standards

Conflict of interest

All the authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with vertebrate animals performed by any of the authors.

Supplementary material

227_2016_2973_MOESM1_ESM.pdf (557 kb)
Supplementary material 1 (PDF 556 kb)


  1. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030 CrossRefGoogle Scholar
  2. Au SY, Bruce TF, Bridges WC, Klaine SJ (2015) Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34:2564–2572CrossRefGoogle Scholar
  3. Avio CG, Gorbi S, Milan M, Benedetti M, Fattorini D, d’Errico G, Pauletto M, Bargelloni L, Regoli F (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. doi: 10.1016/j.envpol.2014.12.021 CrossRefGoogle Scholar
  4. Ayari A, Jelassi R, Ghemari C, Nasri-Ammar K (2015a) Effect of age, sex, and mutual interaction on the locomotor behavior of Orchestia gammarellus in the supralittoral zone of Ghar El Melh lagoon (Bizerte, Tunisia). Biol Rhythm Res 46:703–714. doi: 10.1080/09291016.2015.1048950 CrossRefGoogle Scholar
  5. Ayari A, Jelassi R, Ghemari C, Nasri-Ammar K (2015b) Locomotor activity patterns of two sympatric species Orchestia montagui and Orchestia gammarellus (Crustacea, Amphipoda). Biol Rhythm Res 46:863–871. doi: 10.1080/09291016.2015.1060677 CrossRefGoogle Scholar
  6. Bakir A, Rowland SJ, Thompson RC (2014) Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut 185:16–23. doi: 10.1016/j.envpol.2013.10.007 CrossRefGoogle Scholar
  7. Beermann J, Dick JTA, Thiel M (2015) Social recognition in amphipods: an overview. In: Aquiloni L, Tricarico E (eds) Social recognition in invertebrates the knowns and the unknowns. Springer, Berlin, pp 85–100. doi: 10.1007/978-3-319-17599-7_6 CrossRefGoogle Scholar
  8. Besseling E, Wegner A, Foekema EM, van den Heuvel-Greve MJ, Koelmans AA (2012) Effects of microplastic on fitness and PCB bioaccumulation by the lugworm Arenicola marina. Environ Sci Technol 47:593–600CrossRefGoogle Scholar
  9. Besseling E, Wang B, Lurling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343. doi: 10.1021/es503001d CrossRefGoogle Scholar
  10. Boerger CM, Lattin GL, Moore SL, Moore CJ (2010) Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar Pollut Bull 60:2275–2278. doi: 10.1016/j.marpolbul.2010.08.007 CrossRefGoogle Scholar
  11. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135. doi: 10.1016/j.tree.2008.10.008 CrossRefGoogle Scholar
  12. Bregazzi P, Naylor E (1972) The locomotor activity rhythm of Talitrus saltator (Montagu)(Crustacea, Amphipoda). J Exp Biol 57:375–391Google Scholar
  13. Browne MA (2015) Sources and pathways of microplastics to habitats. In: Bergmann M, Gutow L, Klages M (eds) Marine anthropogenic litter. Springer, Litter, pp 229–244. doi: 10.1007/978-3-319-16510-3_9 CrossRefGoogle Scholar
  14. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008a) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. doi: 10.1021/es800249a CrossRefGoogle Scholar
  15. Browne MA, Galloway T, Thompson R (2008b) Microplastic—an emerging contaminant of potential concern? Integr Environ Assess Manag 3:559–561CrossRefGoogle Scholar
  16. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. doi: 10.1021/es201811s CrossRefGoogle Scholar
  17. Carson HS, Colbert SL, Kaylor MJ, McDermid KJ (2011) Small plastic debris changes water movement and heat transfer through beach sediments. Mar Pollut Bull 62:1708–1713. doi: 10.1016/j.marpolbul.2011.05.032 CrossRefGoogle Scholar
  18. Chua E, Shimeta J, Nugegoda D, Morrison PD, Clarke BO (2014) Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes Compressa. Environ Sci Technol 48:8127–8134. doi: 10.1021/es405717z CrossRefGoogle Scholar
  19. Codling EA, Pitchford JW, Simpson SD (2007) Group navigation and the “many-wrongs principle” in models of animal movement. Ecology 88:1864–1870. doi: 10.1890/06-0854.1 CrossRefGoogle Scholar
  20. Cole M, Lindeque P, Halsband C, Galloway TS (2011) Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62:2588–2597. doi: 10.1016/j.marpolbul.2011.09.025 CrossRefGoogle Scholar
  21. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environmental science & technology 47: 6646–6655.
  22. Cole M, Lindeque P, Fileman E, Halsband C, Galloway TS (2015) The impact of polystyrene microplastics on feeding, function and fecundity in the marine copepod Calanus helgolandicus. Environ Sci Technol 49:1130–1137CrossRefGoogle Scholar
  23. Core Team R (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  24. Defeo O, McLachlan A (2005) Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Mar Ecol Prog Ser 295:1–20. doi: 10.3354/meps295001 CrossRefGoogle Scholar
  25. Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58(Supplement):25–40. doi: 10.1016/S0272-7714(03)00045-3 CrossRefGoogle Scholar
  26. Dugan JE, Hubbard DM, Page HM, Schimel JP (2011) Marine macrophyte wrack inputs and dissolved nutrients in beach sands. Estuaries Coasts 34:839–850. doi: 10.1007/s12237-011-9375-9 CrossRefGoogle Scholar
  27. Endo S, Takizawa R, Okuda K, Takada H, Chiba K, Kanehiro H, Ogi H, Yamashita R, Date T (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114. doi: 10.1016/j.marpolbul.2005.04.030 CrossRefGoogle Scholar
  28. Engler RE (2012) The complex interaction between marine debris and toxic chemicals in the ocean. Environ Sci Technol 46:12302–12315. doi: 10.1021/es3027105 CrossRefGoogle Scholar
  29. Eriksson C, Burton H (2003) Origins and biological accumulation of small plastic particles in fur seals from Macquarie Island. AMBIO: a Journal of the Human. Environment 32:380–384. doi: 10.1579/0044-7447-32.6.380 Google Scholar
  30. Fanini L, Lowry J (2014) Coastal talitrids and connectivity between beaches: a behavioural test. J Exp Mar Biol Ecol 457:120–127. doi: 10.1016/j.jembe.2014.04.010 CrossRefGoogle Scholar
  31. Frias J, Sobral P, Ferreira A (2010) Organic pollutants in microplastics from two beaches of the Portuguese coast. Mar Pollut Bull 60:1988–1992. doi: 10.1016/j.marpolbul.2010.07.030 CrossRefGoogle Scholar
  32. Fries E, Zarfl C (2012) Sorption of polycyclic aromatic hydrocarbons (PAHs) to low and high density polyethylene (PE). Environ Sci Pollut Res 19:1296–1304. doi: 10.1007/s11356-011-0655-5 CrossRefGoogle Scholar
  33. GESAMP (2010) Proceedings of the GESAMP international workshop on plastic particles as a vector in transport0069 ng persistent, bio-accumulating and toxic substances in the oceans. GESAMP Rep Stud, vol. 82Google Scholar
  34. Gherardi F, Aquiloni L, Tricarico E (2012) Revisiting social recognition systems in invertebrates. Animal cognition 15:745–762. doi: 10.1007/s10071-012-0513-y CrossRefGoogle Scholar
  35. Graham ER, Thompson JT (2009) Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. J Exp Mar Biol Ecol 368:22–29. doi: 10.1016/j.jembe.2008.09.007 CrossRefGoogle Scholar
  36. Gonçalves SC, Marques JC (2011) The effects of season and wrack subsidy on the community functioning of exposed sandy beaches. Estuar Coast Shelf Sci 95:165–177CrossRefGoogle Scholar
  37. Gonçalves R, Scholze M, Ferreira AM, Martins M, Correia AD (2008) The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ Res 108:205–213CrossRefGoogle Scholar
  38. Gonçalves SC, Anastácio PM, Marques JC (2013) Talitrid and Tylid crustaceans bioecology as a tool to monitor and assess sandy beaches’ ecological quality condition. Ecol Ind 29:549–557CrossRefGoogle Scholar
  39. Griffiths CL, Stenton-Dozey JME, Koop K (1983) Kelp Wrack and the flow of energy through a Sandy beach ecosystem. In: McLachlan A, Erasmus T (eds) sandy beaches as ecosystems: based on the proceedings of the first international symposium on sandy beaches, held in Port Elizabeth, South Africa, 17–21 January 1983. Springer, Dordrecht, pp 547–556. doi: 10.1007/978-94-017-2938-3_42 CrossRefGoogle Scholar
  40. Hämer J, Gutow L, Köhler A, Saborowski R (2014) Fate of Microplastics in the Marine Isopod Idotea emarginata. Environ Sci Technol 48:13451–13458CrossRefGoogle Scholar
  41. Hawlena D, Kress H, Dufresne ER, Schmitz OJ (2011) Grasshoppers alter jumping biomechanics to enhance escape performance under chronic risk of spider predation. Funct Ecol 25:279–288CrossRefGoogle Scholar
  42. Hirai H, Takada H, Ogata Y, Yamashita R, Mizukawa K, Saha M, Kwan C, Moore C, Gray H, Laursen D (2011) Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull 62:1683–1692. doi: 10.1016/j.marpolbul.2011.06.004 CrossRefGoogle Scholar
  43. Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48:1638–1645. doi: 10.1021/es404295e CrossRefGoogle Scholar
  44. Koch H (1989) The effect of tidal inundation on the activity and behavior of the supralittoral talitrid amphipod Traskorchestia traskiana (Stimpson, 1857). Crustaceana 57:295–303. doi: 10.1163/156854089X00635 CrossRefGoogle Scholar
  45. Koelmans AA (2013) Plastic as a Carrier of POPs to Aquatic Organisms: a Model Analysis. Environ Sci Technol 47:7812–7820. doi: 10.1021/es401169n CrossRefGoogle Scholar
  46. Koelmans AA (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54. doi: 10.1016/j.envpol.2013.12.013 CrossRefGoogle Scholar
  47. Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50:3315–3326. doi: 10.1021/acs.est.5b06069 CrossRefGoogle Scholar
  48. Law KL, Thompson RC (2014) Microplastics in the seas. Science 345:2. doi: 10.1126/science.1254065 CrossRefGoogle Scholar
  49. Lee K-W, Shim WJ, Kwon OY, Kang J-H (2013) Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus. Environ Sci Technol 47:11278–11283CrossRefGoogle Scholar
  50. Lithner D, Damberg J, Dave G, Larsson Å (2009) Leachates from plastic consumer products–Screening for toxicity with Daphnia magna. Chemosphere 74:1195–1200. doi: 10.1016/j.chemosphere.2008.11.022 CrossRefGoogle Scholar
  51. Lowry J (2012) Talitrid amphipods from ocean beaches along the New South Wales coast of Australia (Amphipoda, Talitridae). Zootaxa 3575:1–26Google Scholar
  52. McCready S, Birch GF, Long ER (2006) Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity–A chemical dataset for evaluating sediment quality guidelines. Environ Inl 32:455–465. doi: 10.1016/j.envint.2005.10.006 CrossRefGoogle Scholar
  53. McGinley RH, Prenter J, Taylor PW (2013) Whole-organism performance in a jumping spider, Servaea incana (Araneae: salticidae): links with morphology and between performance traits. Biol J Linn Soc 110:644–657CrossRefGoogle Scholar
  54. Mizukawa K, Takada H, Takeuchi I, Ikemoto T, Omori K, Tsuchiya K (2009) Bioconcentration and biomagnification of polybrominated diphenyl ethers (PBDEs) through lower-trophic-level coastal marine food web. Mar Pollut Bull 58:1217–1224. doi: 10.1016/j.marpolbul.2009.03.008 CrossRefGoogle Scholar
  55. Morritt D (1998) Hygrokinetic responses of talitrid amphipods. J Crustac Biol 18:25–35. doi: 10.2307/1549517 CrossRefGoogle Scholar
  56. Morritt D, Spicer JI (1998) The physiological ecology of talitrid amphipods: an update. Can J Zool 76:1965–1982. doi: 10.1139/z98-168 CrossRefGoogle Scholar
  57. Murray F, Cowie PR (2011) Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar Pollut Bull 62:1207–1217. doi: 10.1016/j.marpolbul.2011.03.032 CrossRefGoogle Scholar
  58. Ogata Y, Takada H, Mizukawa K, Hirai H, Iwasa S, Endo S, Mato Y, Saha M, Okuda K, Nakashima A (2009) International Pellet Watch: global monitoring of persistent organic pollutants (POPs) in coastal waters. 1. Initial phase data on PCBs, DDTs, and HCHs. Mar Pollut Bull 58:1437–1446. doi: 10.1016/j.marpolbul.2009.06.014 CrossRefGoogle Scholar
  59. Oulton LJ, Taylor MP, Hose GC, Brown C (2014) Sublethal toxicity of untreated and treated stormwater Zn concentrations on the foraging behaviour of Paratya australiensis (Decapoda: atyidae). Ecotoxicology 23:1022–1029. doi: 10.1007/s10646-014-1246-2 CrossRefGoogle Scholar
  60. Pinheiro J BD, DebRoy S, Sarkar D, R Core Team (2014) nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–117Google Scholar
  61. Poore AG, Gallagher KM (2013) Strong consequences of diet choice in a talitrid amphipod consuming seagrass and algal wrack. Hydrobiologia 701:117–127CrossRefGoogle Scholar
  62. Rochman CM, Hoh E, Kurobe T, Teh SJ (2013) Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Sci Rep 3:3263. doi: 10.1038/srep03263 CrossRefGoogle Scholar
  63. Rodríguez EM, Medesani DA, Fingerman M (2007) Endocrine disruption in crustaceans due to pollutants: a review. Comp Biochem Physiol A: Mol Integr Physiol 146:661–671. doi: 10.1016/j.cbpa.2006.04.030 CrossRefGoogle Scholar
  64. Ryan P, Connell A, Gardner B (1988) Plastic ingestion and PCBs in seabirds: is there a relationship? Mar Pollut Bull 19:174–176. doi: 10.1016/0025-326X(88)90674-1 CrossRefGoogle Scholar
  65. Scapini F (2006) Keynote papers on sandhopper orientation and navigation. Mar Freshw Behav Physiol 39:73–85. doi: 10.1080/10236240600563412 CrossRefGoogle Scholar
  66. Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392. doi: 10.1016/j.aquatox.2004.03.016 CrossRefGoogle Scholar
  67. Setälä O, Norkko J, Lehtiniemi M (2016) Feeding type affects microplastic ingestion in a coastal invertebrate community. Mar Pollut Bull 102:95–101. doi: 10.1016/j.marpolbul.2015.11.053 CrossRefGoogle Scholar
  68. Simons AM (2004) Many wrongs: the advantage of group navigation. Trends Ecol Evol 19:453–455. doi: 10.1016/j.tree.2004.07.001 CrossRefGoogle Scholar
  69. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759–7764. doi: 10.1021/es071737s CrossRefGoogle Scholar
  70. Teuten EL, Saquing JM, Knappe DR, Barlaz MA, Jonsson S, Björn A, Rowland SJ, Thompson RC, Galloway TS, Yamashita R (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philosoph Trans R Soc Lond Ser B Biol Sci 364:2027–2045. doi: 10.1098/rstb.2008.0284 CrossRefGoogle Scholar
  71. Thiel M (2011) Chemical communication in peracarid crustaceans. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, Berlin, pp 199–218. doi: 10.1007/978-0-387-77101-4_10 Google Scholar
  72. Thompson RC (2015) Microplastics in the marine environment: sources, consequences and solutions. In: Bergmann M, Gutow L, Klages M (eds) Marine Anthropogenic Litter. Springer, Cham, pp 185–200. doi: 10.1007/978-3-319-16510-3_7 CrossRefGoogle Scholar
  73. Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science 304:838. doi: 10.1126/science.1094559 CrossRefGoogle Scholar
  74. Turra A, Manzano AB, Dias RJS, Mahiques MM, Barbosa L, Balthazar-Silva D, Moreira FT (2014) Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Scientific reports 4: 4435.
  75. Ugolini A (1996) Jumping and sun compass in sandhoppers: an antipredator interpretation. Ethol Ecol Evol 8:97–106. doi: 10.1080/08927014.1996.9522937 CrossRefGoogle Scholar
  76. Ugolini A, Ungherese G, Ciofini M, Lapucci A, Camaiti M (2013) Microplastic debris in sandhoppers. Estuar Coast Shelf Sci 129:19–22. doi: 10.1016/j.ecss.2013.05.026 CrossRefGoogle Scholar
  77. Ungherese G, Ugolini A (2009) Sandhopper solar orientation as a behavioural biomarker of trace metals contamination. Environ Pollut 157:1360–1364. doi: 10.1016/j.envpol.2008.11.038 CrossRefGoogle Scholar
  78. Ungherese G, Cincinelli A, Martellini T, Ugolini A (2012) PBDEs in the supralittoral environment: the sandhopper Talitrus saltator (Montagu) as biomonitor? Chemosphere 86:223–227. doi: 10.1016/j.chemosphere.2011.09.029 CrossRefGoogle Scholar
  79. Watts AJ, Lewis C, Goodhead RM, Beckett SJ, Moger J, Tyler CR, Galloway TS (2014) Uptake and retention of microplastics by the shore crab Carcinus maenas. Environ Sci Technol 48:8823–8830CrossRefGoogle Scholar
  80. Wegner A, Besseling E, Foekema E, Kamermans P, Koelmans A (2012) Effects of nanopolystyrene on the feeding behavior of the blue mussel (Mytilus edulis). Environ Toxicol Chem 31:2490–2497CrossRefGoogle Scholar
  81. Weis J (2014) Physiological. Springer, Netherlands, Developmental and Behavioral Effects of Marine Pollution. doi: 10.1007/978-94-007-6949-6 Google Scholar
  82. Weiss H, Wilhems A, Mills N, Scotchmer J, Hall P, Lind K, Brekke T (2000) The Norwegian industry guide to organic geochemical analyses [online]. pp. 102
  83. Wildish DJ (1988) Ecology and natural history of aquatic Talitroidea. Can J Zool 66:2340–2359. doi: 10.1139/z88-349 CrossRefGoogle Scholar
  84. Wong BB, Candolin U (2015) Behavioral responses to changing environments. Behav Ecol 26:665–673. doi: 10.1093/beheco/aru183 CrossRefGoogle Scholar
  85. Wright SL, Rowe D, Thompson RC, Galloway TS (2013a) Microplastic ingestion decreases energy reserves in marine worms. Curr Biol 23:R1031–R1033. doi: 10.1016/j.cub.2013.10.068 CrossRefGoogle Scholar
  86. Wright SL, Thompson RC, Galloway TS (2013b) The physical impacts of microplastics on marine organisms: a review. Environ Pollut 178:483–492. doi: 10.1016/j.envpol.2013.02.031 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Louise Tosetto
    • 1
    Email author
  • Culum Brown
    • 1
  • Jane E. Williamson
    • 1
  1. 1.Department of Biological SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations