Skip to main content

Advertisement

Log in

Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events

  • Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The striped venus Chamelea gallina (Linnaeus 1758) is a species of substantial economic importance, distributed along the Mediterranean coast and the Eastern Atlantic coasts. Due to an intensive trade activity since the 1970’s, this species has experienced a rapid decline in the last 30 years, still exacerbated by irregular mortality events due to undetermined triggers. Global profiling of gene expression has the potential to disentangle the biological effects of various environmental stressors causing severe landings decline or mortality events. In this study, we report the development of a C. gallina-specific oligo-microarray, a first transcriptomic platform for global gene expression profiling in the striped venus. This tool was applied to compare gene expression profiles of clams collected in different periods along the Abruzzo coast in a reference site (T7) and in a site subject to mortality events (T4). Our results reveal substantial transcriptional modifications among the investigated sites and the significant up-regulation of several genes involved in the immune response in the T4 site. The transcriptomic differences between clams from the two investigated sites endorse distinct health and metabolic status under different environmental stressors. Overall, this approach provides a preliminary indication about the potential causes of periodic localized mortality affecting C. gallina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allam B, Raftos D (2015) Immune responses to infectious diseases in bivalves. J Invertebr Pathol 131:121–136. doi:10.1016/j.jip.2015.05.005

    Article  CAS  Google Scholar 

  • Allam B, Pales Espinosa E, Tanguy A et al (2014) Transcriptional changes in Manila clam (Ruditapes philippinarum) in response to brown ring disease. Fish Shellfish Immunol 41:2–11. doi:10.1016/j.fsi.2014.05.022

    Article  CAS  Google Scholar 

  • Avio CG, Gorbi S, Milan M et al (2015) Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environ Pollut 198:211–222. doi:10.1016/j.envpol.2014.12.021

    Article  CAS  Google Scholar 

  • Barber BJ, Blake NJ (1981) Energy storage and utilization in relation to gametogenesis in Argopecten irradians concentricus (say). J Exp Mar Bio Ecol 52:121–134. doi:10.1016/0022-0981(81)90031-9

    Article  CAS  Google Scholar 

  • Berthelin C, Kellner K, Mathieu M (2000) Storage metabolism in the Pacific oyster (Crassostrea gigas) in relation to summer mortalities and reproductive cycle (west coast of France). Comp Biochem Physiol B Biochem Mol Biol 125:359–369. doi:10.1016/S0305-0491(99)00187-X

    Article  CAS  Google Scholar 

  • Brooks SPJ, De Zwaan A, Van den Thillart G, Cattani O, Storey KB (1991) Differential survival of Venus gallina and Scapharca inaequivalvis during anoxic stress: covalent modification of phosphofructokinase and glycogen phosphorylase during anoxia. J Comp Physiol 161B:207–212. doi:10.1007/BF00262885

    Article  Google Scholar 

  • Coppe A, Bortoluzzi S, Murari G et al (2012) Sequencing and characterization of striped venus transcriptome expand resources for clam fishery genetics. PLoS One 7(9):e44185. doi:10.1371/journal.pone.0044185

    Article  CAS  Google Scholar 

  • Del Piero D, Fornaroli D, Balzo M (1998) Situazione dello stock di Chamelea gallina (L. 1758) nel Golfo di Trieste dal 1984 al 1995. Biol Mar Mediterr 5:382–392

    Google Scholar 

  • Delgado M, Silva L, Juárez A (2013) Aspects of reproduction of striped venus Chamelea gallina in the Gulf of Cádiz (SW Spain): implications for fishery management. Fish Res 146:86–95. doi:10.1016/j.fishres.2013.04.005

    Article  Google Scholar 

  • Dennis G, Sherman BT, Hosack DA et al (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4:P3. doi:10.1186/gb-2003-4-5-p3

    Article  Google Scholar 

  • Dunkelberger JR, Song W (2010) Complement and its role in innate and adaptive immune responses. Cell Res 20:34–50. doi:10.1038/cr.2009.139

    Article  CAS  Google Scholar 

  • Elsayed EE, McLaughlin SM, Faisal M (1999) Protease inhibitors in plasma of the softshell clam Mya arenaria: identification and effects of disseminated sarcoma. Comp Biochem Physiol B Biochem Mol Biol 123:427–435. doi:10.1016/S0305-0491(99)00089-9

    Article  Google Scholar 

  • Ezgeta-Balić D, Rinaldi A, Peharda M et al (2011) An energy budget for the subtidal bivalve Modiolus barbatus (Mollusca) at different temperatures. Mar Environ Res 71:79–85. doi:10.1016/j.marenvres.2010.10.005

    Article  Google Scholar 

  • Faisal M, MacIntyre EA, Adham KG et al (1998) Evidence for the presence of protease inhibitors in eastern Crassostrea virginica and Pacific Crassostrea gigas oysters. Comp Biochem Phys B 121:161–168. doi:10.1016/S0305-0491(98)10084-6

    Article  Google Scholar 

  • Fleury E, Huvet A (2012) Microarray analysis highlights immune response of pacific oysters as a determinant of resistance to summer mortality. Mar Biotechnol 14:203–217. doi:10.1007/s10126-011-9403-6

    Article  CAS  Google Scholar 

  • Fleury E, Moal J, Boulo V et al (2010) Microarray-based identification of gonad transcripts differentially expressed between lines of pacific oyster selected to be resistant or susceptible to summer mortality. Mar Biotechnol 12:326–339. doi:10.1007/s10126-009-9227-9

    Article  CAS  Google Scholar 

  • Flye-Sainte-Marie J, Pouvreau S, Paillard C, Jean F (2007) Impact of brown ring disease on the energy budget of the manila clam Ruditapes philippinarum. J Exp Mar Bio Ecol 349:378–389. doi:10.1016/j.jembe.2007.05.029

    Article  Google Scholar 

  • Froglia C (2000) Il contributo della ricerca scientifica alla gestione della pesca dei molluschi bivalvi con draghe idrauliche. Biol Mar Mediterr 7:71–82 (In Italian)

    Google Scholar 

  • Gàl P, Dobò J, Beinrohr L et al (2013) Inhibition of the serine proteases of the complement system. Adv Exp Med Biol 735:23–40

    Article  Google Scholar 

  • Gay M, Renault T, Pons AM, Le Roux F (2004) Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Dis Aquat Organ 62:65–74. doi:10.3354/dao062065

    Article  Google Scholar 

  • Genard B, Miner P, Nicolas JL et al (2013) Integrative study of physiological changes associated with bacterial infection in pacific oyster larvae. PLoS One. doi:10.1371/journal.pone.0064534

    Google Scholar 

  • Genard B, Pernet F, Lemarchand K et al (2011) Physiological and biochemical changes associated with massive mortality events occurring in larvae of American oyster (Crassostrea virginica). Aquat Living Resour 24:247–260. doi:10.1051/alr/2011114

    Article  CAS  Google Scholar 

  • Guévélou E, Huvet A, Galindo-Sánchez CE et al (2013) Sex-specific regulation of AMP-activated protein kinase (AMPK) in the Pacific oyster Crassostrea gigas. Biol Reprod 89:100. doi:10.1095/biolreprod.113.109728

    Article  Google Scholar 

  • Herlong JL, Scott TR (2006) Positioning prostanoids of the D and J series in the immunopathogenic scheme. Immunol Lett 102:121–131. doi:10.1016/j.imlet.2005.10.004

    Article  CAS  Google Scholar 

  • Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat Protoc 4:44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  • Huvet A, Normand J, Fleury E et al (2010) Reproductive effort of Pacific oysters: a trait associated with susceptibility to summer mortality. Aquaculture 304:95–99. doi:10.1016/j.aquaculture.2010.03.022

    Article  Google Scholar 

  • Huvet A, Béguel J-P, Cavaleiro NP et al (2015) Disruption of amylase genes by RNA interference affects reproduction in the Pacific oyster Crassostrea gigas. J Exp Biol 218:1740–1747. doi:10.1242/jeb.116699

    Article  Google Scholar 

  • Ivanina AV, Kurochkin IO, Leamy L, Sokolova IM (2012) Effects of temperature and cadmium exposure on the mitochondria of oysters (Crassostrea virginica) exposed to hypoxia and subsequent reoxygenation. J Exp Biol 215:3142–3154. doi:10.1242/jeb.071357

    Article  CAS  Google Scholar 

  • Jarasrassamee B, Supungul P, Panyim S et al (2005) Recombinant expression and characterization of five-domain Kazal-type serine proteinase inhibitor of black tiger shrimp (Penaeus monodon). Mar Biotechnol (NY) 7:46–52. doi:10.1007/s10126-004-0100-6

    Article  CAS  Google Scholar 

  • Jiménez-Vega F, Vargas-Albores F (2005) A four-Kazal domain protein in Litopenaeus vannamei hemocytes. Dev Comp Immunol 29:385–391. doi:10.1016/j.dci.2004.10.001

    Article  Google Scholar 

  • Kang YS, Kim YM, Park PK II et al (2006) Analysis of EST and lectin expressions in hemocytes of Manila clams (Ruditapes philippinarum) (Bivalvia: Mollusca) infected with Perkinsus olseni. Dev Comp Immunol 30:1119–1131. doi:10.1016/j.dci.2006.03.005

    Article  CAS  Google Scholar 

  • La Peyre JF, Xue Q-G, Itoh N et al (2010) Serine protease inhibitor cvSI-1 potential role in the eastern oyster host defense against the protozoan parasite Perkinsus marinus. Dev Comp Immunol 34:84–92. doi:10.1016/j.dci.2009.08.007

    Article  Google Scholar 

  • Lee Y et al (2014) First molluscan antimicrobial peptide hydramacin in Manila clam: molecular characterization and expression analysis. J Coast Life Med 2(6):447–452. doi:10.12980/JCLM.2.201414J6

    CAS  Google Scholar 

  • Lesher A, Nilsson B, Song W (2013) Properdin in complement activation and tissue injury. Mol Immunol 56:191–198. doi:10.1016/j.molimm.2013.06.002

    Article  CAS  Google Scholar 

  • Li Q, Zhao X, Kong L, Yu H (2013) Transcriptomic response to stress in marine bivalves. Invertebr Surviv J 10:84–93

    CAS  Google Scholar 

  • Lipizer M, Partescano E, Rabitti A, Giorgetti A, Crise A (2014) Qualified temperature, salinity and dissolved oxygen climatologies in a changing Adriatic Sea. Ocean Sci 10(5):771–797. doi:10.5194/os-10-771-2014

    Article  Google Scholar 

  • Maldonado-Aguayo W, Núñez-Acuña G, Valenzuela-Muñoz V et al (2013) Molecular characterization of two kazal-type serine proteinase inhibitor genes in the surf clam Mesodesma donacium exposed to Vibrio anguillarum. Fish Shellfish Immunol 34:1448–1454. doi:10.1016/j.fsi.2013.03.356

    Article  CAS  Google Scholar 

  • Martínez G, Mettifogo L, Lenoir R, Campos EO (1999) Prostaglandins and reproduction of the scallop Argopecten purpuratus: I. Relationship with gamete development. J Exp Zool 284:225–231. doi:10.1002/(SICI)1097-010X(19990701)284:2<225:AID-JEZ12>3.0.CO;2-1

    Article  Google Scholar 

  • Matozzo V, Chinellato A, Munari M et al (2012) First evidence of immunomodulation in bivalves under seawater acidification and increased temperature. PLoS One 7:1–14. doi:10.1371/journal.pone.0033820

    Article  Google Scholar 

  • Milan M, Ferraresso S, Ciofi C et al (2013) Exploring the effects of seasonality and chemical pollution on the hepatopancreas transcriptome of the Manila clam. Mol Ecol 22:2157–2172. doi:10.1111/mec.12257

    Article  CAS  Google Scholar 

  • Milan M, Pauletto M, Boffo L et al (2015) Transcriptomic resources for environmental risk assessment: a case study in the Venice lagoon. Environ Pollut 197:90–98. doi:10.1016/j.envpol.2014.12.005

    Article  CAS  Google Scholar 

  • Monari M, Foschi J, Rosmini R et al (2011) Heat shock protein 70 response to physical and chemical stress in Chamelea gallina. J Exp Mar Bio Ecol 397:71–78. doi:10.1016/j.jembe.2010.11.016

    Article  CAS  Google Scholar 

  • Moreira R, Balseiro P, Planas JV et al (2012) Transcriptomics of in vitro immune-stimulated hemocytes from the manila clam Ruditapes philippinarum using high-throughput sequencing. PLoS One 7(4):e35009. doi:10.1371/journal.pone.0035009

    Article  CAS  Google Scholar 

  • Moreira R, Milan M, Balseiro P et al (2014) Gene expression profile analysis of Manila clam (Ruditapes philippinarum) hemocytes after a Vibrio alginolyticus challenge using an immune-enriched oligo-microarray. BMC Genom 15:267. doi:10.1186/1471-2164-15-267

    Article  Google Scholar 

  • Moschino V, Deppieri M, Marin M (2003) Evaluation of shell damage to the clam Chamelea gallina captured by hydraulic dredging in the Northern Adriatic Sea. ICES J Mar Sci 60(2):393–401. doi:10.1016/S1054

    Article  Google Scholar 

  • Pernet F, Lagarde F, Jeannée N et al (2014) Spatial and temporal dynamics of mass mortalities in oysters is influenced by energetic reserves and food quality. PLoS One 9(2):e88469. doi:10.1371/journal.pone.0088469

    Article  Google Scholar 

  • Perrigault M, Tanguy A, Allam B (2009) Identification and expression of differentially expressed genes in the hard clam, Mercenaria mercenaria, in response to quahog parasite unknown (QPX). BMC Genom 10:377. doi:10.1186/1471-2164-10-377

    Article  Google Scholar 

  • Poulain PM, Cushman-Roisin B (2001) Chap 3 circulation. In: Cushman-Roisin B, Gacic M, Poulain PM, Artegiani A (eds) Physical oceanography of the Adriatic Sea: past, present and future. Kluwer Academic Publisher, Dordrecht, pp 67–109

  • Prado-Alvarez M, Rotllant J, Gestal C et al (2009) Characterization of a C3 and a factor B-like in the carpet-shell clam, Ruditapes decussatus. Fish Shellfish Immunol 26:305–315. doi:10.1016/j.fsi.2008.11.015

    Article  CAS  Google Scholar 

  • Qiu L, Song L, Xu W et al (2007) Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri. Fish Shellfish Immunol 22:451–466. doi:10.1016/j.fsi.2006.05.003

    Article  CAS  Google Scholar 

  • Raftos DA, Kuchel R, Aladaileh S, Butt D (2014) Infectious microbial diseases and host defense responses in sydney rock oysters. Front Microbiol 5:1–12. doi:10.3389/fmicb.2014.00135

    Article  Google Scholar 

  • Ramon M, Richardson CA (1992) Age determination and shell growth of Chamelea gallina (Bivalvia: Veneridae) in the western Mediterranean. Mar Ecol Prog Ser 89:15–23. doi:10.3354/meps089015

    Article  Google Scholar 

  • Renault T, Faury N, Barbosa-Solomieu V, Moreau K (2011) Suppression substractive hybridisation (SSH) and real time PCR reveal differential gene expression in the Pacific cupped oyster, Crassostrea gigas, challenged with Ostreid herpesvirus 1. Dev Comp Immunol 35:725–735. doi:10.1016/j.dci.2011.02.004

    Article  CAS  Google Scholar 

  • Roberts S, Goetz G, White S, Goetz F (2009) Analysis of genes isolated from plated hemocytes of the Pacific oyster, Crassostreas gigas. Mar Biotechnol 11:24–44. doi:10.1007/s10126-008-9117-6

    Article  CAS  Google Scholar 

  • Romanelli M, Cordisco CA, Giovanardi O (2009) The long-term decline of the Chamelea gallina L. (Bivalvia: Veneridae) clam fishery in the Adriatic Sea: is a synthesis possible? Acta Adriat 50:171–204

    Google Scholar 

  • Rowley AF, Vogan CL, Taylor GW, Clare AS (2005) Prostaglandins in non-insectan invertebrates: recent insights and unsolved problems. J Exp Biol 208:3–14. doi:10.1242/jeb.01275

    Article  CAS  Google Scholar 

  • Shigetomi H, Onogi A, Kajiwara H et al (2010) Anti-inflammatory actions of serine protease inhibitors containing the Kunitz domain. Inflamm Res 59:679–687. doi:10.1007/s00011-010-0205-5

    Article  CAS  Google Scholar 

  • Sobral P, Widdows J (1997) Effects of elevated temperatures on the scope for growth and resistance to air exposure of the clam Ruditapes decussatus (L.), from southern Portugal. Sci Mar 61:163–171

    Google Scholar 

  • Soletchnik P, Faury N, Goulletquer P (2006) Seasonal changes in carbohydrate metabolism and its relationship with summer mortality of Pacific oyster Crassostrea gigas (Thunberg) in Marennes-Oléron bay (France). Aquaculture 252:328–338. doi:10.1016/j.aquaculture.2005.07.008

    Article  Google Scholar 

  • Suárez-Ulloa V, Fernández-Tajes J, Manfrin C et al (2013) Bivalve omics: state of the art and potential applications for the biomonitoring of harmful marine compounds. Mar Drugs 11:4370–4389. doi:10.3390/md11114370

    Article  Google Scholar 

  • Torresi M, Acciari VA, Piano A et al (2011) Detection of Vibrio splendidus and related species in Chamelea gallina sampled in the Adriatic along the Abruzzi coastline. Vet Ital 47:371–378

    Google Scholar 

  • Utans U, Quist WC, McManus BM et al (1996) Allograft inflammatory factory-1. A cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation 61:1387–1392. doi:10.1097/00007890-199605150-00018

    Article  CAS  Google Scholar 

  • Visciano P, Scortichini G, Suzzi G et al (2015) Concentrations of contaminants with regulatory limits in samples of clam (Chamelea gallina) collected along the abruzzi region coast in central italy. J Food Prot 78:1719–1728. doi:10.4315/0362-028X.JFP-15-082

    Article  CAS  Google Scholar 

  • Wang GD, Zhang KF, Zhang ZP et al (2008) Molecular cloning and responsive expression of macrophage expressed gene from small abalone Haliotis diversicolor supertexta. Fish Shellfish Immunol 24:346–359. doi:10.1016/j.fsi.2007.12.008

    Article  CAS  Google Scholar 

  • Watano K, Iwabuchi K, Fujii S et al (2001) Allograft inflammatory factor-1 augments production of interleukin-6, -10 and -12 by a mouse macrophage line. Immunology 104:307–316. doi:10.1046/j.1365-2567.2001.01301.x

    Article  CAS  Google Scholar 

  • Xu T, Xie J, Zhu B et al (2014) Allograft inflammatory factor 1 functions as a pro-inflammatory cytokine in the oyster, Crassostrea ariakensis. PLoS One 9:1–12. doi:10.1371/journal.pone.0095859

    Google Scholar 

  • Young JDE, Hengartner H, Podack ER, Cohn ZA (1986) Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44:849–859. doi:10.1016/0092-8674(86)90007-3

    Article  CAS  Google Scholar 

  • Zhang L, Li L, Zhang G (2011) A Crassostrea gigas Toll-like receptor and comparative analysis of TLR pathway in invertebrates. Fish Shellfish Immunol 30:653–660. doi:10.1016/j.fsi.2010.12.023

    Article  CAS  Google Scholar 

  • Zhu L, Song L, Chang Y et al (2006) Molecular cloning, characterization and expression of a novel serine proteinase inhibitor gene in bay scallops (Argopecten irradians, Lamarck 1819). Fish Shellfish Immunol 20:320–331. doi:10.1016/j.fsi.2005.05.009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the project F.E.P. 01/POI/13 (Studio di soluzioni per contrastare la flessione produttiva di vongole [Chamelea gallina] del Compartimento Marittimo di Ortona) financed by the Italian Abruzzo region with determination DH 32/24 of 5 April 2013; Project manager: Prof. Giuseppe Martino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Martino.

Ethics declarations

Conflict of interest

All authors declare they have no conflict of interest.

Animal rights

This article contains studies with animals (Chamelea gallina), from commercial fishery harvesting. All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Responsible Editor: S. Uthicke.

Reviewed by undisclosed experts.

Massimo Milan and Fiorentina Palazzo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary File S1

List of differentially expressed genes obtained by two-way ANOVA analysis considering “sampling time” factor. For each probe, the table reports: the p value, the annotation considering SwissProt, Homo sapiens Ensembl protein database, Danio rerio Ensembl protein database, and Crassostrea gigas Ensembl protein database. (PDF 2447 kb)

Supplementary File S2

Enriched Biological Processes (BPs) and KEGG pathways (KPs) obtained by DAVID functional analyses of significant genes obtained by two-way ANOVA considering “sampling time” factor (see Supplementary File S1). GO terms and KEGG pathways, gene count (number of significant genes for each process), p value and fold enrichment are also reported. (PDF 311 kb)

Supplementary File S3

List of differentially expressed genes identified by two-way ANOVA analysis considering “sampling site” factor. For each probe the table reports: the p value, the fold change at each sampling time comparing T4 and T7 sites, the annotation considering SwissProt, Homo sapiens Ensembl protein database, Danio rerio Ensembl protein database, and Crassostrea gigas Ensembl protein database. Significant transcripts showing a Fold Change FC>1.5 are reported in bolt green (over-expressed in T4 compared to T7), or bolt red (over-expressed in T7 compared to T4). (PDF 1012 kb)

Supplementary File S4

Enriched Biological Processes (BPs) and KEGG pathways (KPs) identified by DAVID functional analyses of significant genes obtained considering “sampling site” factor (see Supplementary File S3). Enrichment analysis was performed separately for up-regulated genes in T4 and T7 clams. GO terms and KEGG pathways, gene count (number of significant genes for each process), p value and fold enrichment are also reported. (PDF 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Milan, M., Palazzo, F., Papetti, C. et al. Transcriptomic profiling of Chamelea gallina from sites along the Abruzzo coast (Italy), subject to periodic localized mortality events. Mar Biol 163, 196 (2016). https://doi.org/10.1007/s00227-016-2971-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2971-2

Keywords

Navigation