Advertisement

Marine Biology

, 163:198 | Cite as

What are we missing about marine invasions? Filling in the gaps with evolutionary genomics

  • C. D. H. ShermanEmail author
  • K. E. Lotterhos
  • M. F. Richardson
  • C. K. Tepolt
  • L. A. Rollins
  • S. R. Palumbi
  • A. D. Miller
Invasive Species - Review paper
Part of the following topical collections:
  1. Invasive Species

Abstract

Research on invasion biology has been largely dominated by studies on the ecological effects of invasion events, although recently, evolutionary processes have been shown to be important to invasion success. This is largely attributed to novel genomic tools that provide new opportunities to unravel the natural history, taxonomy, and invasion pathways of invasive species, as well as the genetic basis of adaptive traits that allow them to expand within and beyond their native range. Despite these advances and the growing literature of genomic research on terrestrial pests, these tools have not been widely applied to marine invasive species. This is in part due to the perception that high levels of dispersal and connectivity in many invasive marine species can limit the opportunity for local adaptation. However, there is growing evidence that even in species with high dispersal potential, significant site-specific adaptation can occur. We review how these “omic” tools provide unprecedented opportunities to characterise the role of adaptive variation, physiological tolerance, and epigenetic processes in determining the success of marine invaders. Yet, rapid range expansion in invasions can confound the analysis of genomic data, so we also review how data should be properly analysed and carefully interpreted under such circumstances. Although there are a limited number of studies pioneering this research in marine systems, this review highlights how future studies can be designed to integrate ecological and evolutionary information. Such datasets will be imperative for the effective management of marine pests.

Keywords

Invasive Species Selective Sweep Epigenetic Variation Invasive Range Adaptive Genetic Variation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Research support was provided by funding from the Centre for Integrative Ecology, Deakin University to CDHS, ADM, MFR, and LAR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ab Rahim ES, Nguyen TTT, Ingram B, Riginos C, Weston KJ, Sherman CDH (2016) Species composition and hybridisation of mussel species (Bivalvia: Mytilidae) in Australia. Mar Freshw Res. doi: 10.1071/MF15307 Google Scholar
  2. Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30CrossRefGoogle Scholar
  3. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709. doi: 10.1038/nrg2844 CrossRefGoogle Scholar
  4. Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet. doi: 10.1038/nrg.2015.28 Google Scholar
  5. Angers B, Castonguay E, Massicotte R (2010) Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol Ecol 19:1283–1295CrossRefGoogle Scholar
  6. Arnaud-Haond S, Candeias R, Serrao EA, Teixeira SJL (2013) Microsatellite markers developed through pyrosequencing allow clonal discrimination in the invasive alga Caulerpa taxifolia. Conservation Genetics Resources 5:667–669. doi: 10.1007/s12686-013-9878-8 CrossRefGoogle Scholar
  7. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K (2013) RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol 22:3179–3190. doi: 10.1111/mec.12276 CrossRefGoogle Scholar
  8. Ayre DJ (1995) Localized adaptation of sea anemone clones. Evidence from transplantation over two spatial scales. J Anim Ecol 64:186–196CrossRefGoogle Scholar
  9. Baldwin JM (1896) A new factor in evolution (Continued). American naturalist 30:536–553CrossRefGoogle Scholar
  10. Bax N, Williamson A, Aguero M, Gonzalez E, Geeves W (2003) Marine invasive alien species: a threat to global biodiversity. Mar Policy 27:313–323. doi: 10.1016/S0308-597X(03)00041-1 CrossRefGoogle Scholar
  11. Bayha KM, Chang MH, Mariani CL, Richardson JL, Edwards DL, DeBoer TS, Moseley C, Aksoy E, Decker MB, Gaffney PM, Harbison GR, McDonald JH, Caccone A (2015) Worldwide phylogeography of the invasive ctenophore Mnemiopsis leidyi (Ctenophora) based on nuclear and mitochondrial DNA data. Biol Invas 17:827–850. doi: 10.1007/s10530-014-0770-6 CrossRefGoogle Scholar
  12. Beaumont MA, Nichols RA, Sciences PB, Dec N (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B Biol Sci 263:1619–1626CrossRefGoogle Scholar
  13. Benestan L, Gosselin T, Perrier C, Sainte-Marie B, Rochette R, Bernatchez L (2015) RAD genotyping reveals fine-scale genetic structuring and provides powerful population assignment in a widely distributed marine species, the American lobster (Homarus americanus). Mol Ecol 24:3299–3315. doi: 10.1111/mec.13245 CrossRefGoogle Scholar
  14. Benzie JAH, Ballment E, Chisholm JRM, Jaubert JM (2000) Genetic variation in the green alga Caulerpa taxifolia. Aquat Bot 66:131–139CrossRefGoogle Scholar
  15. Berg PR, Jentoft S, Star B, Ring KH, Knutsen H, Lien S, Jakobsen KS, André C (2015) Adaptation to low salinity promotes genomic divergence in Atlantic Cod (Gadus morhua L.). Genome Biol Evol 7:1644–1663. doi: 10.1093/gbe/evv093 CrossRefGoogle Scholar
  16. Berthouly-Salazar C, van Rensburg BJ, Le Roux JJ, van Vuuren BJ, Hui C (2012) Spatial sorting drives morphological variation in the invasive bird, Acridotheris tristis. PLoS ONE 7:e38145. doi: 10.1371/journal.pone.0038145 CrossRefGoogle Scholar
  17. Bi K, Vanderpool D, Singhal S, Linderoth T, Moritz C, Good JM (2012) Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales. BMC Genom 13:403. doi: 10.1186/1471-2164-13-403 CrossRefGoogle Scholar
  18. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21CrossRefGoogle Scholar
  19. Bird AP, Taggart MH, Smith BA (1979) Methylated and unmethylated DNA compartments in the sea urchin genome. Cell 17:889–901CrossRefGoogle Scholar
  20. Blakeslee AMH, McKenzie CH, Darling JA, Byers JE, Pringle JM, Roman J (2010) A hitchhiker’s guide to the Maritimes: anthropogenic transport facilitates long-distance dispersal of an invasive marine crab to Newfoundland. Divers Distrib 16:879–891. doi: 10.1111/j.1472-4642.2010.00703.x CrossRefGoogle Scholar
  21. Blanco-Bercial L, Bucklin A (2016) New view of population genetics of zooplankton: RAD-seq analysis reveals population structure of the North Atlantic planktonic copepod Centropages typicus. Mol Ecol 25:1566–1580CrossRefGoogle Scholar
  22. Bock DG, Caseys C, Cousens RD, Ma Hahn, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297. doi: 10.1111/mec.13032 CrossRefGoogle Scholar
  23. Boehm JT, Waldman J, Robinson JD, Hickerson MJ (2015) Population genomics reveals seahorses (Hippocampus erectus) of the western Mid-Atlantic Coast to be residents rather than vagrants. PLoS ONE. doi: 10.1371/journal.pone.0116219 Google Scholar
  24. Bolte S, Fuentes V, Haslob H, Huwer B, Thibault-Botha D, Angel D, Galil B, Javidpour J, Moss AG, Reusch TBH (2013) Population genetics of the invasive ctenophore Mnemiopsis leidyi in Europe reveal source-sink dynamics and secondary dispersal to the Mediterranean Sea. Mar Ecol Prog Ser 485:25-U46. doi: 10.3354/meps10321 CrossRefGoogle Scholar
  25. Bonhomme M, Chevalet C, Servin B, Boitard S, Abdallah JM, Blott S, San Cristobal M, Sancristobal M (2010) Detecting selection in population trees: the Lewontin and Krakauer test extended. Genetics 186:241–262. doi: 10.1534/genetics.104.117275 CrossRefGoogle Scholar
  26. Booth D, Provan J, Maggs CA (2007) Molecular approaches to the study of invasive seaweeds. Bot Mar 50:385–396. doi: 10.1515/bot.2007.043 CrossRefGoogle Scholar
  27. Borsa P, Daguin C, Bierne N (2007) Genomic reticulation indicates mixed ancestry in Southern-Hemisphere Mytilus spp. mussels. Biol J Linn Soc 92:747–754. doi: 10.1111/j.1095-8312.2007.00917.x CrossRefGoogle Scholar
  28. Bourret V, Kent MP, Primmer CR, Vasemägi A, Karlsson S, Hindar K, McGinnity P, Verspoor E, Bernatchez L, Lien S (2013) SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar). Mol Ecol 22:532–551. doi: 10.1111/mec.12003 CrossRefGoogle Scholar
  29. Buerkle AC, Gompert Z (2012) Population genomics based on low coverage sequencing: how low should we go? Mol Ecol. doi: 10.1111/mec.12105 Google Scholar
  30. Burden CT, Stow AJ, Hoggard SJ, Coleman MA, Bishop MJ (2014) Genetic structure of Carcinus maenas in southeast Australia. Mar Ecol Prog Ser 500:139–147CrossRefGoogle Scholar
  31. Byrne M, Morrice M, Wolf B (1997) Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: reproduction and current distribution. Mar Biol 127:673–685CrossRefGoogle Scholar
  32. Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and C. aestuarii. J Biogeogr 30:1809–1820. doi: 10.1111/j.1365-2699.2003.00962.x CrossRefGoogle Scholar
  33. Carroll SP (2008) Facing change: forms and foundations of contemporary adaptation to biotic invasions. Mol Ecol 17:361–372CrossRefGoogle Scholar
  34. Chao A, Jost L, Hsieh TC, Ma KH, Sherwin WB, Rollins LA (2015) Expected Shannon entropy and Shannon differentiation between subpopulations for neutral genes under the finite island model. PLoS ONE. doi: 10.1371/journal.pone.0125471 Google Scholar
  35. Cho YA, Kim E-M, Kim M-J, Kang J-H, Dong CM, An HS, An C-M, Park MA, Park JY (2014) A rapid and simple method for distinguishing two mitten crabs (Eriocheir sinensis and Eriocheir japonica) in Korea using PCR-RFLP and PCR. Food Control 36:20–23. doi: 10.1016/j.foodcont.2013.07.040 CrossRefGoogle Scholar
  36. Colautti RI, Lau JA (2015) Contemporary evolution during invasion: evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017. doi: 10.1111/mec.13162 CrossRefGoogle Scholar
  37. Colot V, Rossignol J-L (1999) Eukaryotic DNA methylation as an evolutionary device. BioEssays 21:402–411. doi: 10.1002/(SICI)1521-1878(199905)21:5<402:AID-BIES7>3.0.CO;2-B CrossRefGoogle Scholar
  38. Covelo-Soto L, Saura M, Morán P (2015) Does DNA methylation regulate metamorphosis? The case of the sea lamprey (Petromyzon marinus) as an example. Comp Biochem Physiol B Biochem Mol Biol 185:42–46CrossRefGoogle Scholar
  39. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, Anway MD, Skinner MK (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci 104:5942–5946. doi: 10.1073/pnas.0610410104 CrossRefGoogle Scholar
  40. Cummings N, King R, Rickers A, Kaspi A, Lunke S, Haviv I, Jowett JBM (2010) Combining target enrichment with barcode multiplexing for high throughput SNP discovery. BMC Genom 11:641. doi: 10.1186/1471-2164-11-641 CrossRefGoogle Scholar
  41. Dabe EC, Sanford RS, Kohn AB, Bobkova Y, Moroz LL (2015) DNA methylation in basal metazoans: insights from Ctenophores. Integr Comp Biol 55:1096–1110. doi: 10.1093/icb/icv086 CrossRefGoogle Scholar
  42. Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007. doi: 10.1111/j.1365-294X.2008.03978.x CrossRefGoogle Scholar
  43. Darling JA, Tsai Y-HE, Blakeslee AMH, Roman J (2014) Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas. R Soc Open Sci. doi: 10.1098/rsos.140202 Google Scholar
  44. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. doi: 10.1038/nrg3012 CrossRefGoogle Scholar
  45. Davidson AD, Hewitt CL, Kashian DR (2015) Understanding acceptable level of risk: incorporating the economic cost of under-managing invasive species. PLoS ONE. doi: 10.1371/journal.pone.0141958 Google Scholar
  46. de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2015) Common garden experiments in the genomic era: new perspectives and opportunities. Heredity 116:249–254. doi: 10.1038/hdy.2015.93 CrossRefGoogle Scholar
  47. De Wit P, Palumbi SR (2013) Transcriptome-wide polymorphisms of red abalone (Haliotis rufescens) reveal patterns of gene flow and local adaptation. Mol Ecol 22:2884–2897. doi: 10.1111/mec.12081 CrossRefGoogle Scholar
  48. De Wit P, Pespeni MH, Ladner JT, Barshis DJ, Seneca F, Jaris H, Therkildsen NO, Morikawa M, Palumbi SR (2012) The simple fool’s guide to population genomics via RNA-Seq: an introduction to high-throughput sequencing data analysis. Mol Ecol Res 12:1058–1067. doi: 10.1111/1755-0998.12003 CrossRefGoogle Scholar
  49. De Wit P, Pespeni MH, Palumbi SR (2015) SNP genotyping and population genomics from expressed sequences -current advances and future possibilities. Mol Ecol. doi: 10.1111/mec.13165 Google Scholar
  50. Deagle BE, Jones FC, Absher DM, Kingsley DM, Reimchen TE (2013) Phylogeography and adaptation genetics of stickleback from the Haida Gwaii archipelago revealed using genome-wide single nucleotide polymorphism genotyping. Mol Ecol 22:1917–1932. doi: 10.1111/mec.12215 CrossRefGoogle Scholar
  51. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y, Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M, Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J, Guigó R (2012) The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22:1775–1789. doi: 10.1101/gr.132159.111 CrossRefGoogle Scholar
  52. Díaz-Freije E, Gestal C, Castellanos-Martínez S, Morán P (2014) The role of DNA methylation on Octopus vulgaris development and their perspectives. Front Physiol. doi: 10.3389/fphys.2014.00062 Google Scholar
  53. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefGoogle Scholar
  54. Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111. doi: 10.1111/mec.13183 CrossRefGoogle Scholar
  55. Driskell AC, Ané C, Burleigh JG, McMahon MM, O’Meara BC, Sanderson MJ (2004) Prospects for building the tree of life from large sequence databases. Science 306:1172–1174. doi: 10.1126/science.1102036 CrossRefGoogle Scholar
  56. Duforet-Frebourg N, Bazin E, Blum MGB (2014) Genome scans for detecting footprints of local adaptation using a Bayesian factor model. Mol Biol Evol 31:2483–2495. doi: 10.1093/molbev/msu182 CrossRefGoogle Scholar
  57. Edmonds CA, Lillie AS, Cavalli-Sforza LL (2004) Mutations arising in the wave front of an expanding population. Proc Natl Acad Sci USA 101:975–979. doi: 10.1073/pnas.0308064100 CrossRefGoogle Scholar
  58. Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S, Yeh C-T, Jia Y, Gendler K, Freeling M (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7:e1002372CrossRefGoogle Scholar
  59. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. doi: 10.1371/journal.pone.0019379 CrossRefGoogle Scholar
  60. Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23:347–351. doi: 10.1016/j.tree.2008.04.004 CrossRefGoogle Scholar
  61. Fariello MI, Boitard S, Naya H, SanCristobal M, Servin B (2013) Detecting signatures of selection through haplotype differentiation among hierarchically structured populations. Genetics 193:929–941. doi: 10.1534/genetics.112.147231 CrossRefGoogle Scholar
  62. Feder ME, Walser J-C (2005) The biological limitations of transcriptomics in elucidating stress and stress responses. J Evol Biol 18:901–910. doi: 10.1111/j.1420-9101.2005.00921.x CrossRefGoogle Scholar
  63. Fields PA, Rudomin EL, Somero GN (2006) Temperature sensitivities of cytosolic malate dehydrogenases from native and invasive species of marine mussels (genus Mytilus): sequence-function linkages and correlations with biogeographic distribution. J Exp Biol 209:656–667. doi: 10.1242/jeb.02036 CrossRefGoogle Scholar
  64. Fierst JL (2015) Using linkage maps to correct and scaffold de novo genome assemblies: methods, challenges, and computational tools. Front Genet 6:1–8. doi: 10.3389/fgene.2015.00220 CrossRefGoogle Scholar
  65. Fletcher LM, Forrest BM (2011) Induced spawning and culture techniques for the invasive ascidian Didemnum vexillum (Kott, 2002). Aquat Invasions 6:457–464. doi: 10.3391/ai.2011.6.4.11 CrossRefGoogle Scholar
  66. Fofonoff PW, Ruiz GM, Steves B, Carlton JT (2003) In ships or on ships? Mechanisms of transfer and invasion for nonnative species to the coasts of North America. In: Ruiz GM & Carlton JT (eds) Invasive species: Vectors and management strategies. Island Press, Washington, pp 152-182Google Scholar
  67. Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993. doi: 10.1534/genetics.108.092221 CrossRefGoogle Scholar
  68. François O, Martins H, Caye K, Schoville SD (2015) Controlling false discoveries in genome scans for selection. Mol Ecol. doi: 10.1111/mec.13513 Google Scholar
  69. Frankham R, Ballou JD, Briscoe DA (2009) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  70. Frankham R, Ballou JD, Eldridge MD, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol J Soc Conserv Biol 25:465–475. doi: 10.1111/j.1523-1739.2011.01662.x CrossRefGoogle Scholar
  71. Franssen SU, Gu J, Bergmann N, Winters G, Klostermeier UC, Rosenstiel P, Bornberg-Bauer E, Reusch TBH (2011) Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc Natl Acad Sci USA 108:19276–19281CrossRefGoogle Scholar
  72. Fraser HB (2011) Genome-wide approaches to the study of adaptive gene expression evolution: systematic studies of evolutionary adaptations involving gene expression will allow many fundamental questions in evolutionary biology to be addressed. BioEssays 33:469–477. doi: 10.1002/bies.201000094 CrossRefGoogle Scholar
  73. Fraser HB (2013) Gene expression drives local adaptation in humans. Genome Res 23:1089–1096. doi: 10.1101/gr.152710.112 CrossRefGoogle Scholar
  74. Fraser HB, Moses AM, Schadt EE (2010) Evidence for widespread adaptive evolution of gene expression in budding yeast. Proc Natl Acad Sci USA 107:2977–2982. doi: 10.1073/pnas.0912245107 CrossRefGoogle Scholar
  75. Futschik A, Schlotterer C (2010) The next generation of molecular markers from massively parallel sequencing of pooled DNA samples. Genetics 186:207–218. doi: 10.1534/genetics.110.114397 CrossRefGoogle Scholar
  76. Gautier M (2015) Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics 201:1555–1579. doi: 10.1534/genetics.115.181453 CrossRefGoogle Scholar
  77. Gautier M, Gharbi K, Cezard T, Foucaud J (2012) The effect of RAD allele dropout on the estimation of genetic variation within and between populations. Mol Ecol. doi: 10.1111/mec.12089 Google Scholar
  78. Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genom 11:1CrossRefGoogle Scholar
  79. Gayral P, Melo-Ferreira J, Glemin S, Bierne N, Carneiro M, Nabholz B, Lourenco JM, Alves PC, Ballenghien M, Faivre N, Belkhir K, Cahais V, Loire E, Bernard A, Galtier N (2013) Reference-free population genomics from next-generation transcriptome data and the vertebrate-invertebrate gap. PLoS Genet. doi: 10.1371/journal.pgen.1003457 Google Scholar
  80. Geller JB, Walton ED, Grosholz ED, Ruiz GM (1997) Cryptic invasions of the crab Carcinus detected by molecular phylogeography. Mol Ecol 6:901–906. doi: 10.1046/j.1365-294X.1997.00256.x CrossRefGoogle Scholar
  81. Gerard K, Bierne N, Borsa P, Chenuil A, Feral JP (2008) Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Mol Phylogenet Evol 49:84–91. doi: 10.1016/j.ympev.2008.07.006 CrossRefGoogle Scholar
  82. Ghabooli S, Shiganova TA, Zhan A, Cristescu ME, Eghtesadi-Araghi P, MacIsaac HJ (2011) Multiple introductions and invasion pathways for the invasive ctenophore Mnemiopsis leidyi in Eurasia. Biol Invas 13:679–690. doi: 10.1007/s10530-010-9859-8 CrossRefGoogle Scholar
  83. Gleason LU, Burton RS (2015) RNA-seq reveals regional differences in transcriptome response to heat stress in the marine snail Chlorostoma funebralis. Mol Ecol 24:610–627. doi: 10.1111/mec.13047 CrossRefGoogle Scholar
  84. Gorokhova E, Lehtiniemi M, Viitasalo-Frosen S, Haddock SHD (2009) Molecular evidence for the occurrence of ctenophore Mertensia ovum in the northern Baltic Sea and implications for the status of the Mnemiopsis leidyi invasion. Limnol Oceanogr 54:2025–2033. doi: 10.4319/lo.2009.54.6.2025 CrossRefGoogle Scholar
  85. Gracey AY, Fraser EJ, Li W, Fang Y, Taylor RR, Rogers J, Brass A, Cossins AR (2004) Coping with cold: an integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc Natl Acad Sci USA 101:16970–16975. doi: 10.1073/pnas.0403627101 CrossRefGoogle Scholar
  86. Greco M, Chiappetta A, Bruno L, Bitonti MB (2011) In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. J Exp Bot: err313Google Scholar
  87. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi: 10.1016/S0169-5347(01)02358-8 CrossRefGoogle Scholar
  88. Grulois D, Leveque L, Viard F (2011) Mosaic genetic structure and sustainable establishment of the invasive kelp Undaria pinnatifida within a bay (Bay of St-Malo, Brittany). Cah Biol Mar 52:485–498Google Scholar
  89. Günther T, Coop G (2013) Robust identification of local adaptation from allele frequencies. Genetics 195:205–220. doi: 10.1534/genetics.113.152462 CrossRefGoogle Scholar
  90. Guo B, Li Z, Merilä J (2016) Population genomic evidence for adaptive differentiation in the Baltic Sea herring. Mol Ecol. doi: 10.1111/mec.13657 Google Scholar
  91. Gupta V, Bijo A, Kumar M, Reddy C, Jha B (2012) Detection of epigenetic variations in the protoplast-derived germlings of Ulva reticulata using methylation sensitive amplification polymorphism (MSAP). Mar Biotechnol 14:692–700CrossRefGoogle Scholar
  92. Hänfling B, Edwards F, Gherardi F (2011) Invasive alien Crustacea: dispersal, establishment, impact and control. Biocontrol. doi: 10.1007/s10526-011-9380-8 Google Scholar
  93. Harms L, Frickenhaus S, Schiffer M, Mark FC, Storch D, Held C, Pörtner H-O, Lucassen M (2014) Gene expression profiling in gills of the great spider crab Hyas araneus in response to ocean acidification and warming. BMC Genom 15:789. doi: 10.1186/1471-2164-15-789 CrossRefGoogle Scholar
  94. Hastings A, Cuddington K, Davies KF, Dugaw CJ, Elmendorf S, Freestone A, Harrison S, Holland M, Lambrinos J, Malvadkar U, Melbourne BA, Moore K, Taylor C, Thomson D (2005) The spatial spread of invasions: new developments in theory and evidence. Ecol Lett 8:91–101. doi: 10.1111/j.1461-0248.2004.00687.x CrossRefGoogle Scholar
  95. Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362. doi: 10.1111/j.1467-2979.2008.00299.x CrossRefGoogle Scholar
  96. He Y, Du Y, Li J, Liu P, Wang Q, Li Z (2015) Analysis of DNA methylation in different tissues of Fenneropenaeus chinensis from the wild population and Huanghai No. 1. Acta Oceanologica Sinica 34:175–180CrossRefGoogle Scholar
  97. Hedrick PW (2011) Genetics of populations, Fourth edn. Jones and Bartlett, SudburyGoogle Scholar
  98. Hendry AP (2016) Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J Hered 107:25–41. doi: 10.1093/jhered/esv060 CrossRefGoogle Scholar
  99. Herborg L-M, Weetman D, Van Oosterhout C, Hanfling B (2007) Genetic population structure and contemporary dispersal patterns of a recent European invader, the Chinese mitten crab, Eriocheir sinensis. Mol Ecol 16:231–242. doi: 10.1111/j.1365-294X.2006.03133.x CrossRefGoogle Scholar
  100. Hess JE, Campbell NR, Close DA, Docker MF, Narum SR (2013) Population genomics of Pacific lamprey: adaptive variation in a highly dispersive species. Mol Ecol 22:2898–2916. doi: 10.1111/mec.12150 CrossRefGoogle Scholar
  101. Hewitt CL (2003) Marine biosecurity issues in the world oceans: global activities and Australian directions. Ocean Yearbook 17(17):193–212CrossRefGoogle Scholar
  102. Hewitt GM (2004) Genetic consequences of climatic oscillations in the quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195. doi: 10.1098/rstb.2003.1388 CrossRefGoogle Scholar
  103. Hewitt CL, Campbell ML (2007) Mechanisms for the prevention of marine bioinvasions for better biosecurity. Mar Pollut Bull 55:395–401. doi: 10.1016/j.marpolbul.2007.01.005 CrossRefGoogle Scholar
  104. Hilbish TJ, Mullinax A, Dolven SI, Meyer A, Koehn RK, Rawson PD (2000) Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): routes and timing of transequatorial migration. Mar Biol 136:69–77CrossRefGoogle Scholar
  105. Hill MP, Hoffmann AA, Umina PA, Cheng X, Miller AD (2016) Genetic analysis along an invasion pathway reveals endemic cryptic taxa, but a single species with little population structure in the introduced range. Divers Distrib 22:57–72. doi: 10.1111/ddi.12385 CrossRefGoogle Scholar
  106. Hoban S, Kelley J, Lotterhos K, Antolin M, Bradburd G, Lowry D, Poss M, Reed L, Storfer A, Whitlock M (2016) Finding the genomic basis of local adaptation: pitfalls, practical solutions and future directions American NaturalistGoogle Scholar
  107. Hochachka P, Somero G (2002) Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, OxfordGoogle Scholar
  108. Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432CrossRefGoogle Scholar
  109. Holderegger R, Kamm U, Gugerli F (2006) Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 21:797–807. doi: 10.1007/s10980-005-5245-9 CrossRefGoogle Scholar
  110. Hollander J, Collyer ML, Adams DC, Johannesson K (2006) Phenotypic plasticity in two marine snails: constraints superseding life history. J Evol Biol 19:1861–1872. doi: 10.1111/j.1420-9101.2006.01171.x CrossRefGoogle Scholar
  111. Holt RD, Gomulkiewicz R (1997) how does immigration influence local adaptation? A reexamination of a familiar paradigm. Am Nat 149:563–572. doi: 10.1086/286005 CrossRefGoogle Scholar
  112. Hui M, Liu Y, Song C, Li Y, Shi G, Cui Z (2014) Transcriptome changes in eriocheir sinensis megalopae after desalination provide insights into osmoregulation and stress adaption in larvae. PLoS ONE 9:e114187. doi: 10.1371/journal.pone.0114187 CrossRefGoogle Scholar
  113. Hutchings JA, Swain DP, Rowe S, Eddington JD, Puvanendran V, Brown JA (2007) Genetic variation in life-history reaction norms in a marine fish. Proc R Soc Lond B Biol Sci 274:1693–1699. doi: 10.1098/rspb.2007.0263 CrossRefGoogle Scholar
  114. Johnson MS, Black R (1984) Pattern beneath the Chaos—the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383CrossRefGoogle Scholar
  115. Jones MR, Good JM (2015) Targeted capture in evolutionary and ecological genomics. Mol Ecol 25:185–202. doi: 10.1111/mec.13304 CrossRefGoogle Scholar
  116. Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefGoogle Scholar
  117. Karlsen BO, Klingan K, Emblem Å, Jørgensen TE, Jueterbock A, Furmanek T, Hoarau G, Johansen SD, Nordeide JT, Moum T (2013) Genomic divergence between the migratory and stationary ecotypes of Atlantic cod. Mol Ecol 22:5098–5111. doi: 10.1111/mec.12454 CrossRefGoogle Scholar
  118. Kelley AL, de Rivera CE, Buckley BA (2011) Intraspecific variation in thermotolerance and morphology of the invasive European green crab, Carcinus maenas, on the west coast of North America. J Exp Mar Biol Ecol 409:70–78. doi: 10.1016/j.jembe.2011.08.005 CrossRefGoogle Scholar
  119. Kilvitis H, Alvarez M, Foust C, Schrey A, Robertson M, Richards C (2014) Ecological epigenetics. In: Landry CR, Aubin-Horth N (eds) Ecological genomics. Springer, Berlin, pp 191–210CrossRefGoogle Scholar
  120. Kirk H, Dorn S, Mazzi D (2013) Molecular genetics and genomics generate new insights into invertebrate pest invasions. Evol Appl 6:842–856. doi: 10.1111/eva.12071 CrossRefGoogle Scholar
  121. Klopfstein S, Currat M, Excoffier L (2006) The fate of mutations surfing on the wave of a range expansion. Mol Biol Evol 23:482–490. doi: 10.1093/molbev/msj057 CrossRefGoogle Scholar
  122. Knott KE, Wray Ga (2000) Controversy and consensus in asteroid systematics: new insights to ordinal and familial relationships. Am Zool 40:382–392Google Scholar
  123. Koskinen P, Törönen P, Nokso-Koivisto J, Holm L (2015) PANNZER: high-throughput functional annotation of uncharacterized proteins in an error-prone environment. Bioinformatics 31:1544–1552. doi: 10.1093/bioinformatics/btu851 CrossRefGoogle Scholar
  124. Laine V, Gossmann T, Schachtschneider K, Garroway C, Madsen O, Verhoeven K, de Jager V, Megens H, Warren W, Minx P (2015) Evolutionary signals of selection on cognition from the great tit genome and methylome. Nat CommunGoogle Scholar
  125. Lal MM, Southgate PC, Jerry DR, Zenger KR (2016) Fishing for divergence in a sea of connectivity: the utility of ddRADseq genotyping in a marine invertebrate, the black-lip pearl oyster Pinctada margaritifera. Mar Genom 25:57–68. doi: 10.1016/j.margen.2015.10.010 CrossRefGoogle Scholar
  126. Landy JA, Travis J (2015) Shape variation in the least killifish: ecological associations of phenotypic variation and the effects of a common garden. Ecol Evol 5:5616–5631. doi: 10.1002/ece3.1780 CrossRefGoogle Scholar
  127. Larsen PF, Nielsen EE, Williams TD, Hemmer-Hansen J, Chipman JK, KruhØFfer M, GrØNkjÆR P, George SG, DyrskjØT L, Loeschcke V (2007) Adaptive differences in gene expression in European flounder (Platichthys flesus). Mol Ecol 16:4674–4683. doi: 10.1111/j.1365-294X.2007.03530.x CrossRefGoogle Scholar
  128. Larsen PF, Schulte PM, Nielsen EE (2011) Gene expression analysis for the identification of selection and local adaptation in fishes. J Fish Biol 78:1–22. doi: 10.1111/j.1095-8649.2010.02834.x CrossRefGoogle Scholar
  129. Lee CE (2002) Evolutionary genetics of invasive species. Trends Ecol Evol 17:386–391. doi: 10.1016/s0169-5347(02)02554-5 CrossRefGoogle Scholar
  130. Lenz PH, Roncalli V, Hassett RP, Wu L-S, Cieslak MC, Hartline DK, Christie AE (2014) De Novo assembly of a transcriptome for Calanus finmarchicus (Crustacea, Copepoda)? The dominant zooplankter of the North Atlantic Ocean. PLoS ONE 9:e88589. doi: 10.1371/journal.pone.0088589 CrossRefGoogle Scholar
  131. Lewis PN, Hewitt CL, Riddle M, McMinn A (2003) Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity. Mar Pollut Bull 46:213–223. doi: 10.1016/s0025-326x(02)00364-8 CrossRefGoogle Scholar
  132. Li S, Qiao K, Shan T, Pang S, Hou H (2013a) Genetic diversity and relationships of the brown alga Undaria pinnatifida cultivated along the Dalian Coast as revealed by amplified fragment length polymorphism markers. J Appl Phycol 25:1255–1263. doi: 10.1007/s10811-012-9922-1 CrossRefGoogle Scholar
  133. Li X, Cui Z, Liu Y, Song C, Shi G (2013b) Transcriptome analysis and discovery of genes involved in immune pathways from hepatopancreas of microbial challenged mitten crab Eriocheir sinensis. PLoS ONE. doi: 10.1371/journal.pone.0068233 Google Scholar
  134. Li E, Wang S, Li C, Wang X, Chen K, Chen L (2014) Transcriptome sequencing revealed the genes and pathways involved in salinity stress of Chinese mitten crab, Eriocheir sinensis. Physiol Genom 46:177–190. doi: 10.1152/physiolgenomics.00191.2013 CrossRefGoogle Scholar
  135. Li Y, Huang X, Guan Y, Shi Y, Zhang H, He M (2015) DNA methylation is associated with expression level changes of galectin gene in mantle wound healing process of pearl oyster, Pinctada fucata. Fish Shellfish Immunol 45:912–918CrossRefGoogle Scholar
  136. Liebl AL, Schrey AW, Richards CL, Martin LB (2013) Patterns of DNA methylation throughout a range expansion of an introduced songbird. Integr Comp Biol 53:351–358. doi: 10.1093/icb/ict007 CrossRefGoogle Scholar
  137. Limborg MT, Helyar SJ, De Bruyn M, Taylor MI, Nielsen EE, Ogden ROB, Carvalho GR, Consortium FPT, Bekkevold D (2012) Environmental selection on transcriptome-derived SNPs in a high gene flow marine fish, the Atlantic herring (Clupea harengus). Mol Ecol 21:3686–3703. doi: 10.1111/j.1365-294X.2012.05639.x CrossRefGoogle Scholar
  138. Liu Y, Zhou J, White KP (2014) RNA-seq differential expression studies: more sequence or more replication? Bioinformatics 30:301–304. doi: 10.1093/bioinformatics/btt688 CrossRefGoogle Scholar
  139. Lockwood BL, Somero GN (2011) Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 20:517–529. doi: 10.1111/j.1365-294X.2010.04973.x CrossRefGoogle Scholar
  140. Lockwood BL, Sanders JG, Somero GN (2010) Transcriptomic responses to heat stress in invasive and native blue mussels (genus Mytilus): molecular correlates of invasive success. The Journal of experimental biology 213:3548–3558. doi: 10.1242/jeb.046094 CrossRefGoogle Scholar
  141. Lombaert E, Estoup A, Facon B, Joubard B, Grégoire JC, Jannin A, Blin A, Guillemaud T (2014) Rapid increase in dispersal during range expansion in the invasive ladybird Harmonia axyridis. J Evol Biol 27:508–517CrossRefGoogle Scholar
  142. Lotterhos KE, Schaal SM (2014) Genome scans for the contemporary response to selection in quantitative traits. Mol Ecol 23:4435–4437. doi: 10.1111/mec.12853 CrossRefGoogle Scholar
  143. Lotterhos KE, Whitlock MC (2014) Evaluation of demographic history and neutral parameterization on the performance of FST outlier tests. Mol Ecol 23:2178–2192. doi: 10.1111/mec.12725 CrossRefGoogle Scholar
  144. Lu B, Zeng Z, Shi T (2013) Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq. Sci China Life Sci 56:143–155. doi: 10.1007/s11427-013-4442-z CrossRefGoogle Scholar
  145. Lv J, Liu P, Wang Y, Gao B, Chen P, Li J (2013) Transcriptome analysis of portunus trituberculatus in response to salinity stress provides insights into the molecular basis of osmoregulation. PLoS ONE 8:e82155. doi: 10.1371/journal.pone.0082155 CrossRefGoogle Scholar
  146. Mamanova L, Coffey AJ, Scott CE, Kozarewa I, Turner EH, Kumar A, Howard E, Shendure J, Turner DJ (2010) Target-enrichment strategies for next-generation sequencing. Nat Methods 7:111–118. doi: 10.1038/nmeth.1419 CrossRefGoogle Scholar
  147. Massicotte R, Whitelaw E, Angers B (2011) DNA methylation: a source of random variation in natural populations. Epigenetics 6:421–427CrossRefGoogle Scholar
  148. Matsuoka N, Hatanaka T (1998) Genetic differentiation among local Japanese populations of the starfish Asterias amurensis inferred from allozyme variation. Genes Genetic Syst 73:59–64. doi: 10.1266/ggs.73.59 CrossRefGoogle Scholar
  149. McDonald JH, Koehn RK (1988) The mussels Mytilus galloprovincialis and M. trossulus on the Pacific coast of North America. Mar Biol 99:111–118. doi: 10.1007/bf00644984 CrossRefGoogle Scholar
  150. McDonald JH, Seed R, Koehn RK (1991) Allozymes and morphometric characters of three species of Mytilus in the Northern and Southern Hemispheres. Mar Biol 111:323–333. doi: 10.1007/bf01319403 CrossRefGoogle Scholar
  151. Mendizabal I, Keller TE, Zeng J, Yi SV (2014) Epigenetics and evolution. Integr Comp Biol 54:31–42. doi: 10.1093/icb/icu040 CrossRefGoogle Scholar
  152. Messer PW, Petrov DA (2013) Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol Evol 28:659–669. doi: 10.1016/j.tree.2013.08.003 CrossRefGoogle Scholar
  153. Metzger DC, Schulte PM (2016) Epigenomics in marine fishes. Mar Genom. doi: 10.1016/j.margen.2016.01.004 Google Scholar
  154. Metzger BPH, Duveau F, Yuan DC, Tryban S, Yang B, Wittkopp PJ (2016) Contrasting frequencies and effects of cis- and trans-regulatory mutations affecting gene expression. Mol Biol Evol. doi: 10.1093/molbev/msw011 Google Scholar
  155. Meusnier I, Valero M, Destombe C, Gode C, Desmarais E, Bonhomme F, Stam WT, Olsen JL (2002) Polymerase chain reaction-single strand conformation polymorphism analyses of nuclear and chloroplast DNA provide evidence for recombination, multiple introductions and nascent speciation in the Caulerpa taxifolia complex. Mol Ecol 11:2317–2325. doi: 10.1046/j.1365-294X.2002.01627.x CrossRefGoogle Scholar
  156. Miga KH (2015) Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosome Res 23:421–426. doi: 10.1007/s10577-015-9488-2 CrossRefGoogle Scholar
  157. Milano I, Babbucci M, Cariani A, Atanassova M, Bekkevold D, Carvalho GR, Espiñeira M, Fiorentino F, Garofalo G, Geffen AJ, Hansen JH, Helyar SJ, Nielsen EE, Ogden R, Patarnello T, Stagioni M, FishPopTrace C, Tinti F, Bargelloni L (2014) Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius). Mol Ecol 23:118–135. doi: 10.1111/mec.12568 CrossRefGoogle Scholar
  158. Miller AD, Skoracka A, Navia D, de Mendonca RS, Szydlo W, Schultz MB, Smith CM, Truol G, Hoffmann AA (2013) Phylogenetic analyses reveal extensive cryptic speciation and host specialization in an economically important mite taxon. Mol Phylogenet Evol 66:928–940. doi: 10.1016/j.ympev.2012.11.021 CrossRefGoogle Scholar
  159. Möller LF, Jonsson P, Reuch T, Dupont S (2014) Impact of the rate of change on adaptation: response of Mnemiopsis leidyi to low salinity through multiple generations. Centre for Marine Evolutionary Biology 11th assemblyGoogle Scholar
  160. Molnar JL, Gamboa RL, Revenga C, Spalding MD (2008) Assessing the global threat of invasive species to marine biodiversity. Front Ecol Environ 6:485–492. doi: 10.1890/070064 CrossRefGoogle Scholar
  161. Moreira R, Pereiro P, Canchaya C, Posada D, Figueras A, Novoa B (2015) RNA-Seq in Mytilus galloprovincialis: comparative transcriptomics and expression profiles among different tissues. BMC Genom 16:1–18. doi: 10.1186/s12864-015-1817-5 CrossRefGoogle Scholar
  162. Moreton J, Izquierdo A, Emes RD (2016) Assembly, assessment, and availability of de novo generated eukaryotic transcriptomes. Front Genetics 6:361. doi: 10.3389/fgene.2015.00361 CrossRefGoogle Scholar
  163. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14:R47–R58. doi: 10.1093/hmg/ddi114 CrossRefGoogle Scholar
  164. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. doi: 10.1016/j.ygeno.2008.07.001 CrossRefGoogle Scholar
  165. Muraoka D, Saitoh K (2005) Identification of Undaria pinnatifida and Undaria undarioides Laminariales, Phaeophyceae using mitochondrial 23S ribosomal DNA sequences. Fish Sci 71:1365–1369. doi: 10.1111/j.1444-2906.2005.01103.x CrossRefGoogle Scholar
  166. Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C (2016) A first insight into the genome of the filter-feeder mussel Mytilus galloprovincialis. PLoS ONE 11:e0151561. doi: 10.1371/journal.pone.0151561 CrossRefGoogle Scholar
  167. Murphy N, Evans B (1998) Genetic origin of Australian populations of Asterias amurensis. In: Goggin L (ed) Proceedings of a meeting on the biology and management of the introduced seastar Asterias amurensis in Australian waters. CSIRO Division of Marine Research, Hobart, pp 22–25Google Scholar
  168. Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10. doi: 10.2307/2407137 CrossRefGoogle Scholar
  169. Novák P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform 11:378. doi: 10.1186/1471-2105-11-378 CrossRefGoogle Scholar
  170. Ojaveer H, Galil BS, Campbell ML, Carlton JT, Canning-Clode J, Cook EJ, Davidson AD, Hewitt CL, Jelmert A, Marchini A, McKenzie CH, Minchin D, Occhipinti-Ambrogi A, Olenin S, Ruiz G (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. PLoS Biol. doi: 10.1371/journal.pbio.1002130 Google Scholar
  171. Olsen JL, Valero M, Meusnier I, Boele-Bos S, Stam WT (1998) Mediterranean Caulerpa taxifolia and C. mexicana (Chlorophyta) are not conspecific. J Phycol 34:850–856CrossRefGoogle Scholar
  172. Pang K, Martindale MQ (2008) Developmental expression of homeobox genes in the ctenophore Mnemiopsis leidyi. Dev Genes Evol 218:307–319. doi: 10.1007/s00427-008-0222-3 CrossRefGoogle Scholar
  173. Pavy N, Gagnon F, Deschênes A, Boyle B, Beaulieu J, Bousquet J (2015) Development of highly reliable in silico SNP resource and genotyping assay from exome capture and sequencing: an example from black spruce (Picea mariana). Mol Ecol Resour. doi: 10.1111/1755-0998.12468 Google Scholar
  174. Pearse DE, Crandall KA (2004) Beyond F(ST): analysis of population genetic data for conservation. Conserv Genet 5:585–602. doi: 10.1007/s10592-003-1863-4 CrossRefGoogle Scholar
  175. Pérez J, Nirchio M, Alfonsi C, Muñoz C (2006) The biology of invasions: the genetic adaptation paradox. Biol Invas 8:1115–1121. doi: 10.1007/s10530-005-8281-0 CrossRefGoogle Scholar
  176. Pespeni MH, Sanford E, Gaylord B, Hill TM, Hosfelt JD, Jaris HK, LaVigne M, Lenz EA, Russell AD, Young MK, Palumbi SR (2013) Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA 110:6937–6942. doi: 10.1073/pnas.1220673110 CrossRefGoogle Scholar
  177. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 7:e37135. doi: 10.1371/journal.pone.0037135 CrossRefGoogle Scholar
  178. Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439: 803–803. http://www.nature.com/nature/journal/v439/n7078/suppinfo/439803a_S1.html
  179. Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecol Econ 52:273–288. doi: 10.1016/j.ecolecon.2004.10.002 CrossRefGoogle Scholar
  180. Platt Ii RN, Blanco-Berdugo L, Ray DA (2016) Accurate transposable element annotation is vital when analyzing new genome assemblies. Genome Biol Evol Adv Access 8:403–410. doi: 10.1093/gbe/evw009 CrossRefGoogle Scholar
  181. Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D (2016) Agricultural applications of insect ecological genomics. Curr Opin Insect Sci 13:61–69CrossRefGoogle Scholar
  182. Pringle JM, Blakeslee AMH, Byers JE, Roman J (2011) Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proc Natl Acad Sci 108:15288–15293. doi: 10.1073/pnas.1100473108 CrossRefGoogle Scholar
  183. Pritchard JK, Di Rienzo A (2010) Adaptation—not by sweeps alone. Nat Rev Genet 11:665–667CrossRefGoogle Scholar
  184. Puritz JB, Hollenbeck CM, Gold JR (2014a) dDocent: a RADseq, variant-calling pipeline designed for population genomics of non-model organisms. Peer J 2:e431. doi: 10.7717/peerj.431 CrossRefGoogle Scholar
  185. Puritz JB, Matz MV, Toonen RJ, Weber JN, Bolnick DI, Bird CE (2014b) Demystifying the RAD fad. Mol Ecol 23:5937–5942. doi: 10.1111/mec.12965 CrossRefGoogle Scholar
  186. Quek XC, Thomson DW, Maag JLV, Bartonicek N, Signal B, Clark MB, Gloss BS, Dinger ME (2015) lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res 43:D168–D173. doi: 10.1093/nar/gku988 CrossRefGoogle Scholar
  187. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, Whitelaw E (2003) Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc Natl Acad Sci 100:2538–2543CrossRefGoogle Scholar
  188. Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH (2015) An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genet. doi: 10.1371/journal.pgen.1004900 Google Scholar
  189. Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91CrossRefGoogle Scholar
  190. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R (2015) A practical guide to environmental association analysis in landscape genomics. Mol Ecol 24:4348–4370. doi: 10.1111/mec.13322 CrossRefGoogle Scholar
  191. Reusch TBH, Bolte S, Sparwel M, Moss AG, Javidpour J (2010) Microsatellites reveal origin and genetic diversity of Eurasian invasions by one of the world’s most notorious marine invader, Mnemiopsis leidyi (Ctenophora). Mol Ecol 19:2690–2699. doi: 10.1111/j.1365-294X.2010.04701.x CrossRefGoogle Scholar
  192. Richards CL, Verhoeven KJ, Bossdorf O (2012) Evolutionary significance of epigenetic variation. Springer, BerlinCrossRefGoogle Scholar
  193. Richardson MF, Sherman CDH (2015) De novo assembly and characterization of the invasive Northern Pacific Seastar transcriptome. PLoS ONE 10:1–18. doi: 10.1371/journal.pone.0142003 Google Scholar
  194. Richardson MF, Sherman CDH, Lee RS, Bott NJ, Hirst AJ (2016) Multiple dispersal vectors drive range expansion in an invasive marine species. Mol Ecol. doi: 10.1111/mec.13817 Google Scholar
  195. Rideout W, Coetzee GA, Olumi AF, Jones PA (1990) 5-Methylcytosine as an endogenous mutagen in the human LDL receptor and p53 genes. Science 249:1288–1290CrossRefGoogle Scholar
  196. Riesgo A, Andrade SCS, Sharma PP, Novo M, Pérez-Porro AR, Vahtera V, González VL, Kawauchi GY, Giribet G (2012) Comparative description of ten transcriptomes of newly sequenced invertebrates and efficiency estimation of genomic sampling in non-model taxa. Front Zool 9:33. doi: 10.1186/1742-9994-9-33 CrossRefGoogle Scholar
  197. Rilov G, Crooks J (2009) biological invasions in marine ecosystems: ecology conservation and management perspectives. Springer, HeidelbergCrossRefGoogle Scholar
  198. Rius M, Bourne S, Hornsby HG, Chapman MA (2015) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61:488CrossRefGoogle Scholar
  199. Rivière G (2014) Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates. Front Physiol 5:129. doi: 10.3389/fphys.2014.00129 Google Scholar
  200. Rollins L, Richardson MF, Shine R (2015) A genetic perspective on rapid evolution in cane toads (Rhinella marina). Mol Ecol 24:2264–2276CrossRefGoogle Scholar
  201. Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B Biol Sci 273:2453–2459. doi: 10.1098/rspb.2006.3597 CrossRefGoogle Scholar
  202. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefGoogle Scholar
  203. Roman JOE, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898. doi: 10.1111/j.1365-294X.2004.02255.x CrossRefGoogle Scholar
  204. Romero IG, Ruvinsky I, Gilad Y (2012) Comparative studies of gene expression and the evolution of gene regulation. Nat Rev Genet 13:505–516CrossRefGoogle Scholar
  205. Rosani U, Domeneghetti S, Pallavicini A, Venier P (2014) Target capture and massive sequencing of genes transcribed in Mytilus galloprovincialis. BioMed Research International 2014:9. doi: 10.1155/2014/538549 CrossRefGoogle Scholar
  206. Ruiz GM, Carlton JT, Grosholz ED, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632CrossRefGoogle Scholar
  207. Ryan JF, Pang K, Schnitzler CE, Anh-Dao N, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Smith SA, Putnam NH, Haddock SHD, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD, Progra NCS (2013) The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. doi: 10.1126/science.1242592 Google Scholar
  208. Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449: 913–918. http://www.nature.com/nature/journal/v449/n7164/suppinfo/nature06250_S1.html
  209. Samorodnitsky E, Datta J, Jewell BM, Hagopian R, Miya J, Wing MR, Damodaran S, Lippus JM, Reeser JW, Bhatt D, Timmers CD, Roychowdhury S (2015) Comparison of custom capture for targeted next-generation DNA sequencing. J Mol Diagn 17:64–75. doi: 10.1016/j.jmoldx.2014.09.009 CrossRefGoogle Scholar
  210. Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. Ann Rev Mar Sci 3:509–535. doi: 10.1146/annurev-marine-120709-142756 CrossRefGoogle Scholar
  211. Sanford E, Roth MS, Johns GC, Wares JP, Somero GN (2003) Local selection and latitudinal variation in a marine predator-prey interaction. Science 300:1135–1137. doi: 10.1126/science.1083437 CrossRefGoogle Scholar
  212. Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, HastingS A, Holt RD, Mayfield MM, O’Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22:465–471. doi: 10.1016/j.tree.2007.06.009 CrossRefGoogle Scholar
  213. Schlamp F, van der Made J, Stambler R, Chesebrough L, Boyko AR, Messer PW (2016) Evaluating the performance of selection scans to detect selective sweeps in domestic dogs. Mol Ecol 25:342–356. doi: 10.1111/mec.13485 CrossRefGoogle Scholar
  214. Schlötterer C, Tobler R, Kofler R, Nolte V (2014) Sequencing pools of individuals—mining genome-wide polymorphism data without big funding. Nat Rev Genet 15:749–763. doi: 10.1038/nrg3803 CrossRefGoogle Scholar
  215. Schnitzler CE, Pang K, Powers ML, Reitzel AM, Ryan JF, Simmons D, Tada T, Park M, Gupta J, Brooks SY, Blakesley RW, Yokoyama S, Haddock SHD, Martindale MQ, Baxevanis AD (2012) Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes. BMC Biol. doi: 10.1186/1741-7007-10-107 Google Scholar
  216. Schrey AW, Coon CA, Grispo MT, Awad M, Imboma T, McCoy ED, Mushinsky HR, Richards CL, Martin LB (2012) Epigenetic variation may compensate for decreased genetic variation with introductions: a case study using house sparrows (Passer domesticus) on two continents. Genet Res IntGoogle Scholar
  217. Schweyen H, Rozenberg A, Leese F (2014) Detection and removal of PCR duplicates in population genomic ddRAD studies by addition of a degenerate base region (DBR) in sequencing adapters. Biol Bull 227:146–160CrossRefGoogle Scholar
  218. Scientists GCo, The Global Invertebrate Genomics Alliance (GIGA) (2014) Developing community resources to study diverse invertebrate genomes. J Hered 105:1–18. doi: 10.1093/jhered/est084 CrossRefGoogle Scholar
  219. Scott GR, Johnston IA (2012) Temperature during embryonic development has persistent effects on thermal acclimation capacity in zebrafish. Proc Natl Acad Sci 109:14247–14252. doi: 10.1073/pnas.1205012109 CrossRefGoogle Scholar
  220. Sexton JP, Hangartner SB, Hoffmann AA (2014) Genetic isolation by environment or distance: which pattern of gene flow is most common? Evolution 68:1–15. doi: 10.1111/evo.12258 CrossRefGoogle Scholar
  221. Shan T, Pang S, Li J, Li X, Su L (2015a) Construction of a high-density genetic map and mapping of a sex-linked locus for the brown alga Undaria pinnatifida (Phaeophyceae) based on large scale marker development by specific length amplified fragment (SLAF) sequencing. BMC Genom. doi: 10.1186/s12864-015-2184-y Google Scholar
  222. Shan TF, Pang SJ, Li J, Li X (2015b) De novo transcriptome analysis of the gametophyte of Undaria pinnatifida (Phaeophyceae). J Appl Phycol 27:1011–1019. doi: 10.1007/s10811-014-0393-4 CrossRefGoogle Scholar
  223. Sherman CDH, Ayre DJ (2008) Fine-scale adaptation in a clonal sea anemone. Evolution 62:1373–1380. doi: 10.1111/j.1558-5646.2008.00375.x CrossRefGoogle Scholar
  224. Sherman CDH, Ab Rahim ES, Olsson M, Careau V (2015) The more pieces, the better the puzzle: sperm concentration increases gametic compatibility. Ecol Evol 5:4354–4364. doi: 10.1002/ece3.1684 CrossRefGoogle Scholar
  225. Shiganova TA (1998) Invasion of the Black Sea by the ctenophore Mnemiopsis leidyi and recent changes in pelagic community structure. Fish Oceanogr 7:305–310. doi: 10.1046/j.1365-2419.1998.00080.x CrossRefGoogle Scholar
  226. Shine R, Brown GP, Phillips BL (2011) An evolutionary process that assembles phenotypes through space rather than through time. Proc Natl Acad Sci. doi: 10.1073/pnas.1018989108 Google Scholar
  227. Simmen MW, Leitgeb S, Charlton J, Jones SJ, Harris BR, Clark VH, Bird A (1999) Nonmethylated transposable elements and methylated genes in a chordate genome. Science 283:1164–1167CrossRefGoogle Scholar
  228. Song L, Bian C, Luo Y, Wang L, You X, Li J, Qiu Y, Ma X, Zhu Z, Ma L, Wang Z, Lei Y, Qiang J, Li H, Yu J, Wong A, Xu J, Shi Q, Xu P (2016) Draft genome of the Chinese mitten crab Eriocheir sinensis. Giga Sci 5:5. doi: 10.1186/s13742-016-0112-y CrossRefGoogle Scholar
  229. Soria-Carrasco V, Gompert Z, Aa Comeault, Farkas TE, Parchman TL, Johnston JS, Buerkle CA, Feder JL, Bast J, Schwander T, Egan SP, Crespi BJ, Nosil P (2014) Stick insect genomes reveal natural selection’s role in parallel speciation. Science 344:738–742. doi: 10.1126/science.1252136 CrossRefGoogle Scholar
  230. Stephan W (2016) Signatures of positive selection: from selective sweeps at individual loci to subtle allele frequency changes in polygenic adaptation. Mol Ecol 25:79–88. doi: 10.1111/mec.13288 CrossRefGoogle Scholar
  231. Stillman JH, Tagmount A (2009) Seasonal and latitudinal acclimatization of cardiac transcriptome responses to thermal stress in porcelain crabs, Petrolisthes cinctipes. Mol Ecol 18:4206–4226. doi: 10.1111/j.1365-294X.2009.04354.x CrossRefGoogle Scholar
  232. Suchanek TH, Geller JB, Kreiser BR, Mitton JB (1997) Zoogeographic distributions of the sibling species Mytilus galloprovincialis and M. trossulus (Bivalvia: Mytilidae) and their hybrids in the north pacific. Biol Bull 193:187–194CrossRefGoogle Scholar
  233. Sui L, Zhang F, Wang X, Bossier P, Sorgeloos P, Hänfling B (2009) Genetic diversity and population structure of the Chinese mitten crab Eriocheir sinensis in its native range. Mar Biol 156:1573–1583. doi: 10.1007/s00227-009-1193-2 CrossRefGoogle Scholar
  234. Sulonen A-M, Ellonen P, Almusa H, Lepistö M, Eldfors S, Hannula S, Miettinen T, Tyynismaa H, Salo P, Heckman C, Joensuu H, Raivio T, Suomalainen A, Saarela J (2011) Comparison of solution-based exome capture methods for next generation sequencing. Genome Biol 12:R94. doi: 10.1186/gb-2011-12-9-r94 CrossRefGoogle Scholar
  235. Sun Y, Hou R, Fu X, Sun C, Wang S, Wang C, Li N, Zhang L, Bao Z (2014) Genome-wide analysis of DNA methylation in five tissues of zhikong scallop, Chlamys farreri. PloS one 9:e86232CrossRefGoogle Scholar
  236. Sun L, Liu H, Zhang L, Meng J (2015) lncRScan-SVM: a tool for predicting long non-coding RNAs using support vector machine. PLoS ONE 10:e0139654. doi: 10.1371/journal.pone.0139654 CrossRefGoogle Scholar
  237. Tajima F (1989a) The effect of change in population size on DNA polymorphism. Genetics 123:597–601Google Scholar
  238. Tajima F (1989b) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  239. Tajima F (1996) The amount of DNA polymorphism maintained in a finite population when the neutral mutation rate varies among sites. Genetics 143:1457–1465Google Scholar
  240. Tenaillon MI, U’Ren J, Tenaillon O, Gaut BS (2004) Selection versus demography: a multilocus investigation of the domestication process in maize. Mol Biol Evol 21:1214–1225. doi: 10.1093/molbev/msh102 CrossRefGoogle Scholar
  241. Tepolt CK (2015) Adaptation in marine invasion: a genetic perspective. Biol Invas 17:887–903. doi: 10.1007/s10530-014-0825-8 CrossRefGoogle Scholar
  242. Tepolt CK, Palumbi SR (2014) Genetic correlates of local adaptation in the globally invasive European green crab, Carcinus maenas. Integr Comp Biol 54:E207–E207Google Scholar
  243. Tepolt CK, Palumbi SR (2015) Transcriptome sequencing reveals both neutral and adaptive genome dynamics in a marine invader. Mol Ecol 24:4145–4158. doi: 10.1111/mec.13294 CrossRefGoogle Scholar
  244. Tepolt CK, Somero GN (2013) Cardiac thermal tolerance and acclimatory plasticity in diverse populations of the invasive green crab, Carcinus maenas. Integr Comp Biol 53:E213–E213Google Scholar
  245. Tepolt CK, Darling JA, Bagley MJ, Geller JB, Blum MJ, Grosholz ED (2009) European green crabs (Carcinus maenas) in the northeastern Pacific: genetic evidence for high population connectivity and current-mediated expansion from a single introduced source population. Divers Distrib 15:997–1009. doi: 10.1111/j.1472-4642.2009.00605.x CrossRefGoogle Scholar
  246. Tian M, Li Y, Jing J, Mu C, Du H, Dou J, Mao J, Li X, Jiao W, Wang Y, Hu X, Wang S, Wang R, Bao Z (2015) Construction of a high-density genetic map and quantitative trait locus mapping in the sea cucumber Apostichopus japonicus. Sci Rep 5:14852. doi: 10.1038/srep14852 CrossRefGoogle Scholar
  247. Tiffin P, Ross-Ibarra J (2014) Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol 29:673–680. doi: 10.1016/j.tree.2014.10.004 CrossRefGoogle Scholar
  248. Tin MMY, Rheindt FE, Cros E, Mikheyev AS (2015) Degenerate adaptor sequences for detecting PCR duplicates in reduced representation sequencing data improve genotype calling accuracy. Mol Ecol Resour 15:329–336. doi: 10.1111/1755-0998.12314 CrossRefGoogle Scholar
  249. Todgham AE, Hofmann GE (2009) Transcriptomic response of sea urchin larvae Strongylocentrotus purpuratus to CO2-driven seawater acidification. J Exp Biol 212:2579–2594. doi: 10.1242/jeb.032540 CrossRefGoogle Scholar
  250. Toro JE (1998) PCR-based nuclear and mtDNA markers and shell morphology as an approach to study the taxonomic status of the Chilean blue mussel, Mytilus chilensis (Bivalvia). Aquat Living Resour 11:347–353. doi: 10.1016/S0990-7440(98)80006-5 CrossRefGoogle Scholar
  251. Uliano-Silva M, Americo JA, Brindeiro R, Dondero F, Prosdocimi F, Rebelo MDF (2014) Gene discovery through transcriptome sequencing for the invasive mussel Limnoperna fortunei. PLoS ONE 9:e102973. doi: 10.1371/journal.pone.0102973 CrossRefGoogle Scholar
  252. Urban MC, Phillips BL, Skelly DK, Shine R (2008) A toad more traveled: the heterogeneous invasion dynamics of cane toads in Australia. Am Nat 171:E134–E148. doi: 10.1086/527494 CrossRefGoogle Scholar
  253. Uwai S, Nelson W, Neill K, Boo SM, Kawai H (2005) Genetic diversity of Undaria pinnatifida in Asia and New Zealand deduced from mitochondrial genes. Phycologia 44:52–53Google Scholar
  254. Uwai S, Nelson W, Neill K, Wang WD, Aguilar-Rosas LE, Boo SM, Kitayama T, Kawa H (2006a) Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes origins and succession of introduced populations. Phycologia 45:687–695. doi: 10.2216/05-66.1 CrossRefGoogle Scholar
  255. Uwai S, Yotsukura N, Serisawa Y, Muraoka D, Hiraoka M, Kogame K (2006b) Intraspecific genetic diversity of Undaria pinnatifida in Japan, based on the Mitochondrial cox3 Gene and the ITS1 of nrDNA. Hydrobiologia 553:345–356. doi: 10.1007/s10750-005-0883-0 CrossRefGoogle Scholar
  256. Uwai S, Emura N, Morita T, Kurashima A, Kawai H (2009) The genetic structure of Undaria species around Japan. Phycologia 48:135Google Scholar
  257. Van Petegem KHP, Pétillon J, Renault D, Wybouw N, Van Leeuwen T, Stoks R, Bonte D (2015) Empirically simulated spatial sorting points at fast epigenetic changes in dispersal behaviour. Evol Ecol 29:299–310CrossRefGoogle Scholar
  258. Vandepitte K, de Meyer T, Helsen K, van Acker K, Roldán-Ruiz I, Mergeay J, Honnay O (2014) Rapid genetic adaptation precedes the spread of an exotic plant species. Mol Ecol 23:2157–2164. doi: 10.1111/mec.12683 CrossRefGoogle Scholar
  259. Vanderhoeven S, Brown CS, Tepolt CK, Tsutsui ND, Vanparys V, Atkinson S, Mahy G, Monty A (2010) Linking concepts in the ecology and evolution of invasive plants: network analysis shows what has been most studied and identifies knowledge gaps. Evol Appl 3:193–202. doi: 10.1111/j.1752-4571.2009.00116.x CrossRefGoogle Scholar
  260. Vatsiou AI, Bazin E, Gaggiotti OE (2015) Detection of selective sweeps in structured populations: a comparison of recent methods. Mol Ecol. doi: 10.1111/mec.13360 Google Scholar
  261. Verbruggen B, Bickley LK, Santos EM, Tyler CR, Stentiford GD, Bateman KS, van Aerle R (2015) De novo assembly of the Carcinus maenas transcriptome and characterization of innate immune system pathways. BMC Genom 16:1–17. doi: 10.1186/s12864-015-1667-1 CrossRefGoogle Scholar
  262. Verhoeven KJF, vonHoldt BM, Sork VL (2016) Epigenetics in ecology and evolution: what we know and what we need to know. Mol Ecol. doi: 10.1111/mec.13617 Google Scholar
  263. Voisin M, Engel C, Viard F (2005) Unravelling the mechanisms behind introduction through genetic approaches: Undaria pinnatifida (Alariaceae) as a model species. Phycologia 44:106–107Google Scholar
  264. Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7:118–126CrossRefGoogle Scholar
  265. Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450. doi: 10.1093/jhered/89.5.438 CrossRefGoogle Scholar
  266. Waples RS (2016) How plasticity and evolution work in the real World. J Hered 107:1–2. doi: 10.1093/jhered/esv093 CrossRefGoogle Scholar
  267. Ward RD, Andrew J (1995) Population genetics of the northern Pacific seastar Asterias amurensis (Echinodermata: Asteriidae): allozyme differentiation among Japanese, Russian, and recently introduced Tasmanian populations. Mar Biol 124:99–109. doi: 10.1007/BF00349151 CrossRefGoogle Scholar
  268. Weir BS, Cockerham CC (1984) Estimating {F}-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  269. Westfall KM, Gardner JPA (2010) Genetic diversity of Southern hemisphere blue mussels (Bivalvia: Mytilidae) and the identification of non-indigenous taxa. Biol J Linn Soc 101:898–909. doi: 10.1111/j.1095-8312.2010.01549.x CrossRefGoogle Scholar
  270. Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci USA 103:5425–5430. doi: 10.1073/pnas.0507648103 CrossRefGoogle Scholar
  271. Whitlock MC, Lotterhos KE (2015) Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of F st. Am Nat 186:S24–S36. doi: 10.1086/682949 CrossRefGoogle Scholar
  272. Whitlock MC, McCauley DE (1999a) Indirect measures of gene flow and migration: F-ST not equal 1/(4Nm + 1). Heredity 82:117–125. doi: 10.1038/sj.hdy.6884960 CrossRefGoogle Scholar
  273. Whitlock MC, McCauley DE (1999b) Indirect measures of gene flow and migration: F ST not equal 1/(4Nm + 1). Heredity 82:117–125CrossRefGoogle Scholar
  274. Wiedenmann J, Baumstark A, Pillen TL, Meinesz A, Vogel W (2001) DNA fingerprints of Caulerpa taxifolia provide evidence for the introduction of an aquarium strain into the Mediterranean Sea and its close relationship to an Australian population. Mar Biol 138:229–234. doi: 10.1007/s002270000456 CrossRefGoogle Scholar
  275. Williams GC (1975) Sex and evolution. Princeton University Press, PrincetonGoogle Scholar
  276. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 14: 507–515 doi  10.1038/nrg3457. http://www.nature.com/nrg/journal/v14/n7/abs/nrg3457.html - supplementary-information
  277. Yamashita M, Komatsu M, Kijima A (2005) Genetic variability and geographical population structure in coastal starfish Asterias amurensis Lutken around Japan estimated by Isozyme analysis, pp 99–108Google Scholar
  278. Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P (2014) Genomic signature of adaptation to climate in Medicago truncatula. Genetics 196:1263–1275. doi: 10.1534/genetics.113.159319 CrossRefGoogle Scholar
  279. Zhan A, Briski E, Bock DG, Ghabooli S, MacIsaac HJ (2015) Ascidians as models for studying invasion success. Mar Biol 162:2449–2470. doi: 10.1007/s00227-015-2734-5 CrossRefGoogle Scholar
  280. Zhang L, Wang X, Liu T, Wang G, Chi S, Liu C, Wang H (2015) Complete plastid genome sequence of the brown alga Undaria pinnatifida. PLoS ONE. doi: 10.1371/journal.pone.0139366 Google Scholar
  281. Zhao X, Yu H, Kong L, Liu S, Li Q (2014) Comparative transcriptome analysis of two oysters, Crassostrea gigas and Crassostrea hongkongensis provides insights into adaptation to hypo-osmotic conditions. PLoS ONE 9:e111915. doi: 10.1371/journal.pone.0111915 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. D. H. Sherman
    • 1
    Email author
  • K. E. Lotterhos
    • 2
  • M. F. Richardson
    • 1
  • C. K. Tepolt
    • 3
  • L. A. Rollins
    • 1
  • S. R. Palumbi
    • 4
  • A. D. Miller
    • 1
    • 5
  1. 1.School of Life and Environmental Sciences, Centre for Integrative EcologyDeakin UniversityGeelongAustralia
  2. 2.Department of Marine and Environmental ScienceNortheastern University Marine Science CenterNahantUSA
  3. 3.Smithsonian Environmental Research CenterEdgewaterUSA
  4. 4.Hopkins Marine StationStanford UniversityPacific GroveUSA
  5. 5.Pest and Environmental Adaptation Research Group, School of BioSciencesThe University of MelbourneParkvilleAustralia

Personalised recommendations