Marine Biology

, 163:185 | Cite as

Withstanding multiple stressors: ephyrae of the moon jellyfish (Aurelia aurita, Scyphozoa) in a high-temperature, high-CO2 and low-oxygen environment

  • María Algueró-MuñizEmail author
  • Cédric L. Meunier
  • Sabine Holst
  • Santiago Alvarez-Fernandez
  • Maarten Boersma
Original paper


Global change is affecting marine ecosystems through a combination of different stressors such as warming, ocean acidification and oxygen depletion. Very little is known about the interactions among these factors, especially with respect to gelatinous zooplankton. Therefore, in this study we investigated the direct effects of pH, temperature and oxygen availability on the moon jellyfish Aurelia aurita, concentrating on the ephyral life stage. Starved one-day-old ephyrae were exposed to a range of pCO2 (400–4000 ppm) and three different dissolved oxygen levels (from saturated to hypoxic conditions), in two different temperatures (5 and 15 °C) for 7 days. Carbon content and swimming activity were analysed at the end of the incubation period, and mortality noted. General linearized models were fitted through the data, with the best fitting models including two- and three-way interactions between pCO2, temperature and oxygen concentration. The combined effect of the stressors was small but significant, with the clearest negative effect on growth caused by the combination of all three stressors present (high temperature, high CO2, low oxygen). We conclude that A. aurita ephyrae are robust and that they are not likely to suffer from these environmental stressors in a near future.


Ocean Acidification Swimming Activity Gelatinous Zooplankton Extreme Treatment Moon Jellyfish 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We want to thank our colleagues from R/V Aade, as well as Saskia Ohse, Ursula Ecker and Sylvia Peters for technical support. Thanks also to Dr. Björn Rost and his group (Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Phytoplankton Ecophysiology), specially to Laura Wischnewski, for hosting and helping us with the carbonate chemistry analyses. We also thank Dr. Luis Giménez Noya (Bangor University) for statistical advice. Financial support for this study was provided by the German Ministry of Education and Research through phase II (BMBF, FKZ 03F0655A) and III (BMBF, FKZ 03F0728B) of the BIOACID (Biological Impacts of Ocean ACIDification) project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.


  1. Acuña JL, López-Urrutia Á, Colin S (2015) Faking giants: the evolution of high prey clearance rates in jellyfishes. Science 333:1627–1629. doi: 10.1126/science.1205134 CrossRefGoogle Scholar
  2. Bailey KM, Batty RS (1984) Laboratory study of predation by Aurelia aurita on larvae of cod, flounder, plaice and herring: development and vulnerability to capture. Mar Biol 83:287–291. doi: 10.1007/BF00397461 CrossRefGoogle Scholar
  3. Båmstedt U, Wild B, Martinussen M (2001) Significance of food type for growth of ephyrae Aurelia aurita (Scyphozoa). Mar Biol 139:641–650. doi: 10.1007/s002270100623 CrossRefGoogle Scholar
  4. Bijma J, Pörtner H-O, Yesson C, Rogers AD (2013) Climate change and the oceans—what does the future hold? Mar Pollut Bull 76:436. doi: 10.1016/j.marpolbul.2013.10.014 CrossRefGoogle Scholar
  5. Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488. doi: 10.1002/iroh.200811066 CrossRefGoogle Scholar
  6. Bopp L, Le Quéré C, Heimann M, Manning AC, Monfray P (2002) Climate-induced oceanic oxygen fluxes: implications for the contemporary carbon budget. Glob Biogeochem Cycles 16:6-1–6-13. doi: 10.1029/2001GB001445 CrossRefGoogle Scholar
  7. Brewer PG, Peltzer ET (2009) Limits to marine life. Science 324:347–348. doi: 10.1126/science.1170756 CrossRefGoogle Scholar
  8. Brodeur RD, Sugisaki H Jr, Hunt GL (2002) Increases in jellyfish biomass in the Bering Sea: implications for the ecosystem. Mar Ecol Prog Ser 233:89–103. doi: 10.3354/meps233089 CrossRefGoogle Scholar
  9. Cargo DG, King DR (1990) Forecasting the abundance of the Sea Nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13:486–491. doi: 10.2307/1351793 CrossRefGoogle Scholar
  10. Cawood AM (2012) Laboratory and in situ investigations of factors affecting the growth and survivorship of the Scyphozoan jellyfish Aurelia sp1. Ph.D. thesisGoogle Scholar
  11. Condon RH, Graham WM, Duarte CM, Pitt KA, Lucas CH, Haddock SHD, Sutherland KR, Robinson KL, Dawson MN, Decker MB, Mills CE, Purcell JE, Malej A, Mianzan H, S-i U, Gelcich S, Madin LP (2012) Questioning the rise of gelatinous zooplankton in the world’s oceans. Bioscience 62:160–169. doi: 10.1525/bio.2012.62.2.9 CrossRefGoogle Scholar
  12. Davis AR, Coleman D, Broad A, Byrne M, Dworjanyn SA, Przeslawski R (2013) Complex responses of intertidal molluscan embryos to a warming and acidifying ocean in the presence of UV radiation. PLoS ONE 8:e55939. doi: 10.1371/journal.pone.0055939 CrossRefGoogle Scholar
  13. Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929. doi: 10.1126/science.1156401 CrossRefGoogle Scholar
  14. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep Sea Res 34:1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  15. Dupont S, Pörtner H-O (2013) A snapshot of ocean acidification research. Mar Biol 160:1765–1771. doi: 10.1007/s00227-013-2282-9 CrossRefGoogle Scholar
  16. Fabry VJ, Seibel BA, Feely RA, Orr JC (2008) Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J Mar Sci 65:414–432. doi: 10.1093/icesjms/fsn048 CrossRefGoogle Scholar
  17. Fu Z, Shibata M, Makabe R, Ikeda H, S-i U (2014) Body size reduction under starvation, and the point of no return, in ephyrae of the moon jellyfish Aurelia aurita. Mar Ecol Prog Ser 510:255–263. doi: 10.3354/meps10799 CrossRefGoogle Scholar
  18. Gambill M, Peck MA (2014) Respiration rates of the polyps of four jellyfish species: potential thermal triggers and limits. J Exp Mar Biol Ecol 459:17–22. doi: 10.1016/j.jembe.2014.05.005 CrossRefGoogle Scholar
  19. Gattuso J-P, Lavigne H (2009) Technical note: approaches and software tools to investigate the impact of ocean acidification. Biogeosciences 6:2121–2133. doi: 10.5194/bg-6-2121-2009 CrossRefGoogle Scholar
  20. Gibbons MJ, Richardson AJ (2013) Beyond the jellyfish joyride and global oscillations: advancing jellyfish research. J Plankton Res 35:929–938. doi: 10.1093/plankt/fbt063 CrossRefGoogle Scholar
  21. Gobler CJ, DePasquale EL, Griffith AW, Baumann H (2014) Hypoxia and acidification have additive and synergistic negative effects on the growth, survival, and metamorphosis of early life stage bivalves. PLoS ONE 9:e83648. doi: 10.1371/journal.pone.0083648 CrossRefGoogle Scholar
  22. Hernroth L, Gröndahl F (1983) On the biology of Aurelia aurita (L.): 1. Release and growth of Aurelia aurita (L.) ephyrae in the Gullmarfjorden, western Sweden. Ophelia 22:189–199CrossRefGoogle Scholar
  23. Holst S (2012) Effects of climate warming on strobilation and ephyra production of North Sea scyphozoan jellyfish. Hydrobiologia 690:127–140. doi: 10.1007/s10750-012-1043-y CrossRefGoogle Scholar
  24. Holst S, Jarms G (2007) Substrate choice and settlement preferences of planula larvae of five Scyphozoa (Cnidaria) from German Bight, North Sea. Mar Biol 151:863–871. doi: 10.1007/s00227-006-0530-y CrossRefGoogle Scholar
  25. IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  26. Ishii H, Katsukoshi K (2010) Seasonal and vertical distribution of Aurelia aurita polyps on a pylon in the innermost part of Tokyo Bay. J Oceanogr 66:329–336. doi: 10.1007/s10872-010-0029-5 CrossRefGoogle Scholar
  27. Ishii H, Takagi A (2003) Development time of planula larvae on the oral arms of the scyphomedusa Aurelia aurita. J Plankton Res 25:1447–1450. doi: 10.1093/plankt/fbg094 CrossRefGoogle Scholar
  28. Ishii H, Kojima S, Tanaka Y (2004) Survivorship and production of Aurelia aurita ephyrae in the innermost part of Tokyo Bay, Japan. Plankton Biol Ecol 51:26–35Google Scholar
  29. Ishii H, Ohba T, Kobayashi T (2008) Effects of low dissolved oxygen on planula settlement, polyp growth and asexual reproduction of Aurelia aurita. Plankton Benthos Res 3:107–113. doi: 10.3800/pbr.3.107 CrossRefGoogle Scholar
  30. Jansson A, Norkko J, Dupont S, Norkko A (2015) Growth and survival in a changing environment: combined effects of moderate hypoxia and low pH on juvenile bivalve Macoma balthica. J Sea Res 102:41–47. doi: 10.1016/j.seares.2015.04.006 CrossRefGoogle Scholar
  31. Keeling RF, Garcia HE (2002) The change in oceanic O2 inventory associated with recent global warming. PNAS 99:7848–7853. doi: 10.1073/pnas.122154899 CrossRefGoogle Scholar
  32. Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229. doi: 10.1146/annurev.marine.010908.163855 CrossRefGoogle Scholar
  33. Kikkawa T, Minowa Y, Nakamura Y, Kita J, Ishimatsu A (2010) Swimming inhibition by elevated pCO2 in ephyrae of the scyphozoan jellyfish, Aurelia. Plankton Benthos Res 5:119–122. doi: 10.3800/pbr.5.119 CrossRefGoogle Scholar
  34. Kirby R, Beaugrand G, Lindley J (2009) Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12:548–561. doi: 10.1007/s10021-009-9241-9 CrossRefGoogle Scholar
  35. Klein SG, Pitt KA, Rathjen KA, Seymour JE (2014) Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors. Glob Change Biol 20:28–37. doi: 10.1111/gcb.12408 CrossRefGoogle Scholar
  36. Kogovšek T, Bogunović B, Malej A (2010) Recurrence of bloom-forming scyphomedusae: wavelet analysis of a 200-year time series. Hydrobiologia 645:81–96. doi: 10.1007/s10750-010-0217-8 CrossRefGoogle Scholar
  37. Kramp PL (1937) Polypdr (Coelentarata), II. Gopler. Danmarks Fauna 43:1–223Google Scholar
  38. Kranz SA, Levitan O, Richter KU, Prášil O, Berman-Frank I, Rost B (2010) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol 154:334–345. doi: 10.1104/pp.110.159145 CrossRefGoogle Scholar
  39. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284CrossRefGoogle Scholar
  40. Lesniowski TJ, Gambill M, Holst S, Peck MA, Algueró-Muñiz M, Haunost M, Malzahn AM, Boersma M (2015) Effects of food and CO2 on growth dynamics of polyps of two scyphozoan species (Cyanea capillata and Chrysaora hysoscella). Mar Biol 162:1371–1382. doi: 10.1007/s00227-015-2660-6 CrossRefGoogle Scholar
  41. Lewis E, Wallace D, Allison LJ (1998) Program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, managed by Lockheed Martin Energy Research Corporation for the US Department of EnergyGoogle Scholar
  42. Lucas CH (2001) Reproduction and life history strategies of the common jellyfish, Aurelia aurita, in relation to its ambient environment. Hydrobiologia 451:229–246. doi: 10.1023/A:1011836326717 CrossRefGoogle Scholar
  43. Lynam CP, Hay SJ, Brierley AS (2004) Interannual variability in abundance of North Sea jellyfish and links to the North Atlantic Oscillation. Limnol Oceanogr 49:637–643. doi: 10.4319/lo.2004.49.3.0637 CrossRefGoogle Scholar
  44. Lynam CP, Gibbons MJ, Axelsen BE, Sparks CA, Coetzee J, Heywood BG, Brierley AS (2006) Jellyfish overtake fish in a heavily fished ecosystem. Curr Biol 16:R492–R493. doi: 10.1016/j.cub.2006.06.018 CrossRefGoogle Scholar
  45. Lynam CP, Attrill MJ, Skogen MD (2010) Climatic and oceanic influences on the abundance of gelatinous zooplankton in the North Sea. J Mar Biol Assoc UK 90:1153–1159. doi: 10.1017/S0025315409990488 CrossRefGoogle Scholar
  46. Malzahn AM, Hantzsche F, Schoo KL, Boersma M, Aberle N (2010) Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162:35–48. doi: 10.1007/s00442-009-1458-y CrossRefGoogle Scholar
  47. Mehrbach C, Culberson CH, Hawley JE, Pytkowicx RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907. doi: 10.4319/lo.1973.18.6.0897 CrossRefGoogle Scholar
  48. Melzner F, Thomsen J, Koeve W, Oschlies A, Gutowska MA, Bange HW, Hansen HP, Körtzinger A (2013) Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar Biol 160:1875–1888. doi: 10.1007/s00227-012-1954-1 CrossRefGoogle Scholar
  49. Miller M-EC, Graham WM (2012) Environmental evidence that seasonal hypoxia enhances survival and success of jellyfish polyps in the northern Gulf of Mexico. J Exp Mar Biol Ecol 432–433:113–120. doi: 10.1016/j.jembe.2012.07.015 CrossRefGoogle Scholar
  50. Nguyen HD, Doo SS, Soars NA, Byrne M (2012) Noncalcifying larvae in a changing ocean: warming, not acidification/hypercapnia, is the dominant stressor on development of the sea star Meridiastra calcar. Glob Change Biol 18:2466–2476. doi: 10.1111/j.1365-2486.2012.02714.x CrossRefGoogle Scholar
  51. Pascual M, Fuentes V, Canepa A, Atienza D, Gili J-M, Purcell JE (2014) Temperature effects on asexual reproduction of the scyphozoan Aurelia aurita s.l.: differences between exotic (Baltic and Red seas) and native (Mediterranean Sea) populations. Mar Ecol. doi: 10.1111/maec.12196 Google Scholar
  52. Paulmier A, Ruiz-Pino D, Garçon V (2011) CO2 maximum in the oxygen minimum zone (OMZ). Biogeosciences 8:239–252. doi: 10.5194/bg-8-239-2011 CrossRefGoogle Scholar
  53. Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi: 10.1126/science.1111322 CrossRefGoogle Scholar
  54. Pitt KA, Duarte CM, Lucas CH, Sutherland KR, Condon RH, Mianzan H, Purcell JE, Robinson KL, S-i U (2013) Jellyfish body plans provide allometric advantages beyond low carbon content. PLoS ONE 8:e72683. doi: 10.1371/journal.pone.0072683 CrossRefGoogle Scholar
  55. Pörtner H-O, Langenbuch M, Michaelidis B (2005) Synergistic effects of temperature extremes, hypoxia, and increases in CO2 on marine animals: from Earth history to global change. J Geophys Res 110:C09S10. doi: 10.1029/2004JC002561 CrossRefGoogle Scholar
  56. Purcell JE (2005) Climate effects on formations of jellyfish and ctenophore blooms: a review. J Mar Biol Assoc UK 85:461–476. doi: 10.1017/S0025315405011409 CrossRefGoogle Scholar
  57. Purcell JE (2012) Jellyfish and ctenophore blooms coincide with human proliferations and environmental perturbations. Annu Rev Mar Sci 4:209–235. doi: 10.1146/annurev-marine-120709-142751 CrossRefGoogle Scholar
  58. Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44. doi: 10.1023/A:1011883905394 CrossRefGoogle Scholar
  59. Purcell JE, S-i U, Lo W-T (2007) Anthropogenic causes of jellyfish blooms and their direct consequences for humans: a review. Mar Ecol Prog Ser 350:153–174. doi: 10.3354/meps07093 CrossRefGoogle Scholar
  60. Queirós AM, Fernandes JA, Faulwetter S, Nunes J, Rastrick SPS, Mieszkowska N, Artioli Y, Yool A, Calosi P, Arvanitidis C, Findlay HS, Barange M, Cheung WWL, Widdicombe S (2015) Scaling up experimental ocean acidification and warming research: from individuals to the ecosystem. Glob Change Biol 21:130–143. doi: 10.1111/gcb.12675 CrossRefGoogle Scholar
  61. Rabalais NN, Díaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7:585–619. doi: 10.5194/bg-7-585-2010 CrossRefGoogle Scholar
  62. Rasmussen E (1973) Systematics and ecology of the Isefjord marine fauna. Ophelia 11:1–507CrossRefGoogle Scholar
  63. Richardson AJ (2008) In hot water: zooplankton and climate change. ICES J Mar Sci 65:279–295. doi: 10.1093/icesjms/fsn028 CrossRefGoogle Scholar
  64. Riebesell U, Gattuso J-P (2015) Lessons learned from ocean acidification research. Nat Clim Change 5:12–14. doi: 10.1038/nclimate2456 CrossRefGoogle Scholar
  65. Robbins LL, Hansen ME, Kleypas JA, Meylan SC (2010) CO2calc: a user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). U.S. Geological SurveyGoogle Scholar
  66. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu Q, Casassa G, Menzel A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357. doi: 10.1038/nature06937 CrossRefGoogle Scholar
  67. Sarmiento JL, Hughes TMC, Stouffer RJ, Manabe S (1998) Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393:245–249. doi: 10.1038/30455 CrossRefGoogle Scholar
  68. Schoo KL, Malzahn AM, Krause E, Boersma M (2013) Increased carbon dioxide availability alters phytoplankton stoichiometry and affects carbon cycling and growth of a marine planktonic herbivore. Mar Biol 160:2145–2155. doi: 10.1007/s00227-012-2121-4 CrossRefGoogle Scholar
  69. Shoji J, Masuda R, Yamashita Y, Tanaka M (2005) Effect of low dissolved oxygen concentrations on behavior and predation rates on red sea bream Pagrus major larvae by the jellyfish Aurelia aurita and by juvenile Spanish mackerel Scomberomorus niphonius. Mar Biol 147:863–868. doi: 10.1007/s00227-005-1579-8 CrossRefGoogle Scholar
  70. Steckbauer A, Ramajo L, Hendriks IE, Fernandez M, Lagos N, Prado L, Duarte CM (2015) Synergistic effects of hypoxia and increasing CO2 on benthic invertebrates of the central Chilean coast. Front Mar Sci. doi: 10.3389/fmars.2015.00049 Google Scholar
  71. Suzuki K, Yasuda A, Murata Y, Kumakura E, Yamada S, Endo N, Nogata Y (2016) Quantitative effects of pycnocline and dissolved oxygen on vertical distribution of moon jellyfish Aurelia aurita s.l.: a case study of Mikawa Bay. Japan. Hydrobiologia 766:151–163. doi: 10.1007/s10750-015-2451-6 CrossRefGoogle Scholar
  72. Titelman J, Hansson L (2006) Feeding rates of the jellyfish Aurelia aurita on fish larvae. Mar Biol 149:297–306. doi: 10.1007/s00227-005-0200-5 CrossRefGoogle Scholar
  73. Uye S (2011) Human forcing of the copepod–fish–jellyfish triangular trophic relationship. Hydrobiologia 666:71–83. doi: 10.1007/s10750-010-0208-9 CrossRefGoogle Scholar
  74. van Vuuren D, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt G, Kram T, Krey V, Lamarque J-F, Masui T, Meinshausen M, Nakicenovic N, Smith S, Rose S (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi: 10.1007/s10584-011-0148-z CrossRefGoogle Scholar
  75. van Walraven L, Langenberg VT, Dapper R, Witte JI, Zuur AF, van der Veer HW (2015) Long-term patterns in 50 years of scyphomedusae catches in the western Dutch Wadden Sea in relation to climate change and eutrophication. J Plankton Res 37:151–167. doi: 10.1093/plankt/fbu088 CrossRefGoogle Scholar
  76. Vaquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. PNAS 105:15452–15457. doi: 10.1073/pnas.0803833105 CrossRefGoogle Scholar
  77. Wallace RB, Baumann H, Grear JS, Aller RC, Gobler CJ (2014) Coastal ocean acidification: the other eutrophication problem. Estuar Coast Shelf Sci 148:1–13. doi: 10.1016/j.ecss.2014.05.027 CrossRefGoogle Scholar
  78. Wang N, Li C (2015) The effect of temperature and food supply on the growth and ontogeny of Aurelia sp. 1 ephyrae. Hydrobiologia 754:157. doi: 10.1007/s10750-014-1981-7 CrossRefGoogle Scholar
  79. Widmer CL (2005) Effects of temperature on growth of north-east Pacific moon jellyfish ephyrae, Aurelia labiata (Cnidaria: Scyphozoa). J Mar Biol Assoc UK 85:569–573. doi: 10.1017/S0025315405011495 CrossRefGoogle Scholar
  80. Wiltshire K, Manly BJ (2004) The warming trend at Helgoland Roads, North Sea: phytoplankton response. Helgol Mar Res 58:269–273. doi: 10.1007/s10152-004-0196-0 CrossRefGoogle Scholar
  81. Winans AK, Purcell JE (2010) Effects of pH on asexual reproduction and statolith formation of the scyphozoan, Aurelia labiata. Hydrobiologia 645:39–52. doi: 10.1007/s10750-010-0224-9 CrossRefGoogle Scholar
  82. Zuur A, Ieno EN, Walker N, Sareliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • María Algueró-Muñiz
    • 1
    Email author
  • Cédric L. Meunier
    • 1
  • Sabine Holst
    • 2
  • Santiago Alvarez-Fernandez
    • 1
  • Maarten Boersma
    • 1
    • 3
  1. 1.Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt HelgolandHelgolandGermany
  2. 2.Senckenberg am Meer, German Center for Marine Biodiversity ResearchHamburgGermany
  3. 3.University of BremenBremenGermany

Personalised recommendations