Marine Biology

, 163:176 | Cite as

Unexpected structured intraspecific diversity of thioautotrophic bacterial gill endosymbionts within the Lucinidae (Mollusca: Bivalvia)

  • Terry Brissac
  • Dominique Higuet
  • Olivier Gros
  • Hervé Merçot
Original paper

Abstract

In chemoautotrophic associations, sequence comparison of 16S rRNA has been the method of choice to study bacterial diversity in the context of host/symbiont coevolution. However, the relative low rate of evolution of 16S rRNA has been shown to result in a diminished capacity to discriminate between closely related bacterial strains or species. Within chemoautotrophic associations, as described in several studies, the use of other genetic markers may reveal previously unobserved strain diversity among gill endosymbionts. Herein, we conducted a survey of symbionts harbored by six species within the Lucinidae family using five genetic markers (dnaE, gyrB, aprA, cbbL genes and the 16S–23S internal transcribed spacer). Thus, within the already described SoLuc_1 bacterial species shared by six host species we observed an obvious bacterial strain diversity. This diversity is structured in function of the geographic location of the hosts and not in function of ecological parameters or host phylogeny. Interestingly at the local level (same seagrass bed environment), we observed an unexpected specificity in host species/bacterial strain association (i.e., all individuals of the same host species harbor the same symbiotic sequence type). This specificity of association implied that there was a control of symbiont strain acquisition by the host, which was confirmed by a cross-infection experiment of starved adults performed in our study. Based upon our results and other evidence from the literature, we hypothesize that this pattern may be due to a “capture/escape” type antagonist evolution of the two partners.

References

  1. Allen JA (1958) On the basic form and adaptations to habitat in the lucinacea (eulamellibranchia). Philos Trans R Soc Lond B Biol Sci 241:421–484. doi:10.1098/rstb.1958.0010 CrossRefGoogle Scholar
  2. Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  3. Blazejak A, Kuever J, Erseus C, Amann R, Dubilier N (2006) Phylogeny of 16S rRNA, ribulose 1,5-bisphosphate carboxylase/oxygenase, and adenosine 5′-phosphosulfate reductase genes from gamma- and alphaproteobacterial symbionts in gutless marine worms (oligochaeta) from Bermuda and the Bahamas. Appl Environ Microbiol 72:5527–5536. doi:10.1128/AEM.02441-05 CrossRefGoogle Scholar
  4. Brissac T, Gros O, Mercot H (2009) Lack of endosymbiont release by two Lucinidae (Bivalvia) of the genus Codakia: consequences for symbiotic relationships. FEMS Microbiol Ecol 67:261–267. doi:10.1111/j.1574-6941.2008.00626.x CrossRefGoogle Scholar
  5. Brissac T, Mercot H, Gros O (2011) Lucinidae/sulfur-oxidizing bacteria: ancestral heritage or opportunistic association? Further insights from the Bohol Sea (the Philippines). FEMS Microbiol Ecol 75:63–76. doi:10.1111/j.1574-6941.2010.00989.x CrossRefGoogle Scholar
  6. Byun R, Elbourne LD, Lan R, Reeves PR (1999) Evolutionary relationships of pathogenic clones of Vibrio cholerae by sequence analysis of four housekeeping genes. Infect Immun 67:1116–1124Google Scholar
  7. Caro A, Got P, Bouvy M, Troussellier M, Gros O (2009) Effects of long-term starvation on a host bivalve (Codakia orbicularis, Lucinidae) and its symbiont population. Appl Environ Microbiol 75:3304–3313. doi:10.1128/AEM.02659-08 CrossRefGoogle Scholar
  8. Cary SC, Warren W, Anderson E, Giovannoni SJ (1993) Identification and localization of bacterial endosymbionts in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques. Mol Mar Biol Biotechnol 2:51–62Google Scholar
  9. Colson P, Tamalet C, Raoult D (2006) SVARAP and aSVARAP: simple tools for quantitative analysis of nucleotide and amino acid variability and primer selection for clinical microbiology. BMC Microbiol 6:21. doi:10.1186/1471-2180-6-21 CrossRefGoogle Scholar
  10. Cooper JE, Feil EJ (2004) Multilocus sequence typing–what is resolved? Trends Microbiol 12:373–377. doi:10.1016/j.tim.2004.06.003 CrossRefGoogle Scholar
  11. Decelle J, Probert I, Bittner L, Desdevises Y, Colin S, de Vargas C, Gali M, Simo R, Not F (2012) An original mode of symbiosis in open ocean plankton. Proc Natl Acad Sci U S A 109:18000–18005. doi:10.1073/pnas.1212303109 CrossRefGoogle Scholar
  12. Deplancke B, Hristova KR, Oakley HA, McCracken VJ, Aminov R, Mackie RI, Gaskins HR (2000) Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol 66:2166–2174CrossRefGoogle Scholar
  13. Di Meo CA, Wilbur AE, Holben WE, Feldman RA, Vrijenhoek RC, Cary SC (2000) Genetic variation among endosymbionts of widely distributed vestimentiferan tubeworms. Appl Environ Microbiol 66:651–658CrossRefGoogle Scholar
  14. Distel DL, Lane DJ, Olsen GJ, Giovannoni SJ, Pace B, Pace NR, Stahl DA, Felbeck H (1988) Sulfur-oxidizing bacterial endosymbionts: analysis of phylogeny and specificity by 16S rRNA sequences. J Bacteriol 170:2506–2510Google Scholar
  15. Distel DL, Felbeck H, Cavanaugh CM (1994) Evidence for phylogenetic congruence among sulfur-oxidizing chemoautotrophic bacterial endosymbiont and their Bivalve hosts. J Mol Evol 38:533–542CrossRefGoogle Scholar
  16. Dubilier N, Giere O, Distel DL, Cavanaugh CM (1995) Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta: Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl Environ Microbiol 61:2346–2350Google Scholar
  17. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740. doi:10.1038/nrmicro1992 CrossRefGoogle Scholar
  18. Duperron S, Fiala-Medioni A, Caprais JC, Olu K, Sibuet M (2007) Evidence for chemoautotrophic symbiosis in a Mediterranean cold seep clam (Bivalvia: Lucinidae): comparative sequence analysis of bacterial 16S rRNA, APS reductase and RubisCO genes. FEMS Microbiol Ecol 59:64–70. doi:10.1111/j.1574-6941.2006.00194.x CrossRefGoogle Scholar
  19. Duperron S, Laurent MC, Gaill F, Gros O (2008) Sulphur-oxidizing extracellular bacteria in the gills of Mytilidae associated with wood falls. FEMS Microbiol Ecol 63:338–349. doi:10.1111/j.1574-6941.2008.00438.x CrossRefGoogle Scholar
  20. Durand P, Gros O (1996) Bacterial host specificity of Lucinacea endosymbionts: interspecific variation in 16S rRNA sequences. FEMS Microbiol Lett 140:193–198. doi:10.1111/j.1574-6968.1996.tb08335.x CrossRefGoogle Scholar
  21. Elisabeth NH, Gustave SD, Gros O (2012) Cell proliferation and apoptosis in gill filaments of the lucinid Codakia orbiculata (Montagu, 1808) (Mollusca: Bivalvia) during bacterial decolonization and recolonization. Microsc Res Tech 75:1136–1146. doi:10.1002/jemt.22041 CrossRefGoogle Scholar
  22. Elsaied H, Naganuma T (2001) Phylogenetic diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes from deep-sea microorganisms. Appl Environ Microbiol 67:1751–1765. doi:10.1128/AEM.67.4.1751-1765.2001 CrossRefGoogle Scholar
  23. Felbeck H, Childress JJ, Somero GN (1981) Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293:291–293. doi:10.1038/293291a0 CrossRefGoogle Scholar
  24. Feldman RA, Black MB, Cary CS, Lutz RA, Vrijenhoek RC (1997) Molecular phylogenetics of bacterial endosymbionts and their vestimentiferan hosts. Mol Mar Biol Biotechnol 6:268–277Google Scholar
  25. Fisher CR (1990) Chemoautotrophic and methanotrophic symbioses in marine invertebrates. Rev Aquat Sci 2:399–613Google Scholar
  26. Gros O, Darrasse A, Durand P, Frenkiel L, Mouëza M (1996) Environmental transmission of a sulfur-oxidizing bacterial gill endosymbiont in the tropical lucinid bivalve Codakia orbicularis. Appl Environ Microbiol 62:2324–2330Google Scholar
  27. Gros O, Frenkiel L, Mouëza M (1997) Embryonic, larval, and post-larval development in the symbiotic clam codakia orbicularis (Bivalvia: Lucinidae). Invertebr Biol 116:86–101CrossRefGoogle Scholar
  28. Gros O, De Wulf-Durand P, Frenkiel L, Mouëza M (1998) Putative environmental transmission of sulfur-oxidizing bacterial symbionts in tropical lucinid bivalves inhabiting various environments. FEMS Microbiol Lett 160:257–262CrossRefGoogle Scholar
  29. Gros O, Duplessis MR, Felbeck H (1999) Embryonic Development and endosymbiont transmission mode in the symbiotic clam Lucinoma aequizonata (Bivalvia:Lucinidae). Invert Reprod Dev 36:93–103CrossRefGoogle Scholar
  30. Gros O, Frenkiel L, Felbeck H (2000) Sulfur-oxidizing endosymbiosis in Divaricella quadrisulcata (Bivalvia: Lucinidae): morphological, ultrastructural, and phylogenetic analysis. Symbiosis 29:293–317Google Scholar
  31. Gros O, Liberge M, Felbeck H (2003a) Interspecific infection of aposymbiotic juveniles of Codakia orbicularis by various tropical lucinid gill-endosymbionts. Mar Biol 142:57–66Google Scholar
  32. Gros O, Liberge M, Heddi A, Khatchadourian C, Felbeck H (2003b) Detection of the free-living forms of sulfide-oxidizing gill endosymbionts in the lucinid habitat (Thalassia testudinum environment). Appl Environ Microbiol 69:6264–6267CrossRefGoogle Scholar
  33. Gros O, Elisabeth NH, Gustave SD, Caro A, Dubilier N (2012) Plasticity of symbiont acquisition throughout the life cycle of the shallow-water tropical lucinid Codakia orbiculata (Mollusca: Bivalvia). Environ Microbiol 14:1584–1595. doi:10.1111/j.1462-2920.2012.02748.x CrossRefGoogle Scholar
  34. Holmes DE, Nevin KP, Lovley DR (2004) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599. doi:10.1099/ijs.0.02958-054/5/1591 CrossRefGoogle Scholar
  35. Ishaq M, Wolf B, Ritter C (1990) Large-scale isolation of plasmid DNA using cetyltrimethylammonium bromide. Biotechniques 9: 19–20, 22, 24Google Scholar
  36. Lane DJ (1991) 16S/23S Sequencing. In: Stackebrandt EGM (ed) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175Google Scholar
  37. Lukjancenko O, Wassenaar TM, Ussery DW (2010) Comparison of 61 sequenced Escherichia coli genomes. Microb Ecol 60:708–720. doi:10.1007/s00248-010-9717-3 CrossRefGoogle Scholar
  38. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DT (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J Parasitol 33:733–755. doi:10.1016/S0020-7519(03)00049-3 CrossRefGoogle Scholar
  39. Peek AS, Feldman RA, Lutz RA, Vrijenhoek RC (1998) Cospeciation of chemoautotrophic bacteria and deep sea clams. Proc Natl Acad Sci USA 95:9962–9966CrossRefGoogle Scholar
  40. Piednoel M, Bonnivard E (2009) DIRS1-like retrotransposons are widely distributed among Decapoda and are particularly present in hydrothermal vent organisms. BMC Evol Biol 9:86CrossRefGoogle Scholar
  41. Polz MF, Cavanaugh CM (1995) Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci USA 92:7232–7236CrossRefGoogle Scholar
  42. Polz MF, Distel DL, Zarda B, Amann R, Felbeck H, Ott JA, Cavanaugh CM (1994) Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl Environ Microbiol 60:4461–4467Google Scholar
  43. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefGoogle Scholar
  44. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386Google Scholar
  45. Stewart FJ, Newton IL, Cavanaugh CM (2005) Chemosynthetic endosymbioses: adaptations to oxic-anoxic interfaces. Trends Microbiol 13:439–448. doi:10.1016/j.tim.2005.07.007 CrossRefGoogle Scholar
  46. Vrijenhoek RC, Duhaime M, Jones WJ (2007) Subtype variation among bacterial endosymbionts of tubeworms (Annelida: Siboglinidae) from the Gulf of California. Biol Bull 212:180–184CrossRefGoogle Scholar
  47. Williams ST, Taylor JD, Glover EA (2003) Molecular Phylogeny of the Lucinoidea (Bivalvia): Non-Monophyly and Separate Acquisition of Bacterial Chemosymbiosis. J Molluscan Stud 70:187–202CrossRefGoogle Scholar
  48. Winnepenninckx BM, Reid DG, Backeljau T (1998) Performance of 18S rRNA in littorinid phylogeny (Gastropoda: Caenogastropoda). J Mol Evol 47:586–596CrossRefGoogle Scholar
  49. Won YJ, Hallam SJ, O’Mullan GD, Pan IL, Buck KR, Vrijenhoek RC (2003) Environmental acquisition of thiotrophic endosymbionts by deep-sea mussels of the genus bathymodiolus. Appl Environ Microbiol 69:6785–6792CrossRefGoogle Scholar
  50. Zhang DX, Hewitt GM (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584. doi:10.1046/j.1365-294X.2003.01773.x CrossRefGoogle Scholar
  51. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.UMR 7138 – Evolution Paris-Seine, Equipe Evolution du génome eucaryote, C.N.R.S, Institut de Biologie Paris-SeineSorbonne Universités Paris VIParisFrance
  2. 2.UMR-CNRS-UPMC 7138 “Evolution Paris Seine”, Equipe Biologie de la mangrove, Département de Biologie, UFR des Sciences Exactes et NaturellesUniversité des AntillesPointe-À-Pitre CedexFrance
  3. 3.Department of Microbiology, School of MedicineUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations