Marine Biology

, 163:162 | Cite as

Bacterial communities of oceanic sea star (Asteroidea: Echinodermata) larvae

  • Madeline R. Galac
  • Isidro Bosch
  • Daniel A. Janies
Original paper

Abstract

Planktotrophic sea star larvae of several species are abundant in oligotrophic waters of the Gulf Stream, western Sargasso Sea, and Caribbean Sea. One abundant larval morphotype at the bipinnaria stage of development is unusual in its ability to constitutively produce clones and in harboring a community of auto-fluorescent bacteria. We hypothesized that the bacterial community would be distinct in these larvae compared to those that do not consistently reproduce clonally. Three sea star larval morphotypes were collected in the Gulf Stream off the coast of Florida. We used DNA-based maximum likelihood phylogenetic analyses to taxonomically classify the larvae and 16S rDNA profiling by deep sequencing to characterize the bacterial communities harbored within. The cloning bipinnaria and non-cloning brachiolaria morphotypes were determined to be a single species of Asteroidea in the family Oreasteridae. The third morphotype, a non-cloning bipinnaria, was identified as Mithrodia clavigera. With bacterial 16S rDNA profiling, we found that the two species of larvae harbor bacterial communities distinct from each other. The Oreasteridae bacterial community at both developmental stages has a photosynthetic Cyanobacteria Synechococcus sp. as the most abundant bacteria. The M. clavigera larvae host a flora consisting primarily of Gammaproteobacteria. The identification of the larval microbiomes is a step toward understanding their host–microbe interactions. Specifically, the association of photosynthetic bacteria with cloning larvae allows for future assessments of whether the bacteria supplement the nutrition of the larvae during extended periods of development and clonal reproduction in open ocean regions where phytoplankton food for the larvae may be in limited supply.

Supplementary material

227_2016_2938_MOESM1_ESM.pdf (136 kb)
Supplementary material 1 (PDF 135 kb)
227_2016_2938_MOESM2_ESM.pdf (137 kb)
Supplementary material 2 (PDF 137 kb)

References

  1. Anderson MJ (2001) A new method for non parametric multivariate analysis of variance. Austral Ecol 26:32–46. doi:10.1111/j.1442-9993.2001.01070.pp.x Google Scholar
  2. Aravindraja C, Viszwapriya D, Karutha Pandian S (2013) Ultradeep 16S rRNA sequencing analysis of geographically similar but diverse unexplored marine samples reveal varied bacterial community composition. PLoS ONE 8:1–8. doi:10.1371/journal.pone.0076724 CrossRefGoogle Scholar
  3. Balser E (1998) Cloning by ophiuroid echinoderm larvae. Biol Bull 194:187–193. doi:10.2307/1543049 CrossRefGoogle Scholar
  4. Bengtsson M, Sjøtun K, Storesund J, Øvreås J (2011) Utilization of kelp-derived carbon sources by kelp surface-associated bacteria. Aquat Microb Ecol 62:191–199. doi:10.3354/ame01477 CrossRefGoogle Scholar
  5. Bengtsson MM, Sjøtun K, Lanzén A, Ovreås L (2012) Bacterial diversity in relation to secondary production and succession on surfaces of the kelp Laminaria hyperborea. ISME J 6:2188–2198. doi:10.1038/ismej.2012.67 CrossRefGoogle Scholar
  6. Blasiak LC, Zinder SH, Buckley DH, Hill RT (2014) Bacterial diversity associated with the tunic of the model chordate Ciona intestinalis. ISME J 8:309–320. doi:10.1038/ismej.2013.156 CrossRefGoogle Scholar
  7. Bosch I (1992) Symbiosis between bacteria and oceanic clonal sea star larvae in the western North Atlantic Ocean. Mar Biol 502:495–502. doi:10.1007/BF00350041 CrossRefGoogle Scholar
  8. Bosch I, Rivkin RB, Alexander SP (1989) Asexual reproduction by oceanic planktotrophic echinoderm larvae. Nature 337:169–170. doi:10.1038/337169a0 CrossRefGoogle Scholar
  9. Brown MV, Ostrowski M, Grzymski JJ, Lauro FM (2014) A trait based perspective on the biogeography of common and abundant marine bacterioplankton clades. Mar Genom 15:17–28. doi:10.1016/j.margen.2014.03.002 CrossRefGoogle Scholar
  10. Byrne M (2013) Asteroid evolutionary developmental biology and ecology. In: Lawrence JM (ed) Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, pp 51–58Google Scholar
  11. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. doi:10.1038/NMETH.F.303 CrossRefGoogle Scholar
  12. Clark AM, Downey ME (1992) Starfishes of the Atlantic. An illustrated key. Koeltz Scientific Book, CambridgeGoogle Scholar
  13. Cleary DFR, Becking LE, de Voogd NJ et al (2013) Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol Ecol 85:465–482. doi:10.1111/1574-6941.12135 CrossRefGoogle Scholar
  14. Eaves AA, Palmer AR (2003) Widespread cloning in echinoderm larvae. Nature 425:146. doi:10.1038/425146a CrossRefGoogle Scholar
  15. Fiore CL, Baker DM, Lesser MP (2013) Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen? PLoS ONE 8:e72961. doi:10.1371/journal.pone.0072961 CrossRefGoogle Scholar
  16. Forget NL, Kim Juniper S (2013) Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. Microbiologyopen 2:259–275. doi:10.1002/mbo3.70 CrossRefGoogle Scholar
  17. Fraune S, Bosch TCG (2010) Why bacteria matter in animal development and evolution. BioEssays 32:571–580. doi:10.1002/bies.200900192 CrossRefGoogle Scholar
  18. Heimeier D, Lavery S, Sewell MA (2010) Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: lessons from a large scale study. Mar Genom 3:165–177. doi:10.1016/j.margen.2010.09.004 CrossRefGoogle Scholar
  19. Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and the subcuticular bacteria of echinoderms. Acta Zool 59:169–185. doi:10.1111/j.1463-6395.1978.tb01032.x CrossRefGoogle Scholar
  20. Jaeckle WB (1994) Multiple modes of asexual reproduction by tropical and subtropical sea star larvae: an unusual adaptation for genet dispersal and survival. Biol Bull 186:62. doi:10.2307/1542036 CrossRefGoogle Scholar
  21. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 CrossRefGoogle Scholar
  22. Knott KE, Balser EJ, Jaeckle WB, Wray GA (2003) Identification of asteroid genera with species capable of larval cloning. Biol Bull 204:246–255. doi:10.2307/1543596 CrossRefGoogle Scholar
  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. doi:10.1093/molbev/msw054 Google Scholar
  24. Kurilenko VV, Christen R, Zhukova NV et al (2010) Granulosicoccus coccoides sp. nov., isolated from leaves of seagrass (Zostera marina). Int J Syst Evol Microbiol 60:972–976. doi:10.1099/ijs.0.013516-0 CrossRefGoogle Scholar
  25. Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404 CrossRefGoogle Scholar
  26. Lawrence SA, O’Toole R, Taylor MW, Davy SK (2010) Subcuticular bacteria associated with two common New Zealand echinoderms: characterization using 16S rRNA sequence analysis and fluorescence in situ hybridization. Biol Bull 218:95–104. doi:10.2307/25622862 Google Scholar
  27. Lee K, Lee HK, Choi T-H et al (2007) Granulosicoccaceae fam. nov., to include Granulosicoccus antarcticus gen. nov., sp. nov., a non-phototrophic, obligately aerobic chemoheterotroph in the order Chromatiales, isolated from Antarctic seawater. J Microbiol Biotechnol 17:1483–1490Google Scholar
  28. Lesser MP, Walker CW (1992) Comparative study of the uptake of dissolved amino acid in sympatric brittle stars with and without endosymbiotic bacteria. Comp Biochem Physiol B Comp Biochem 101:217–223. doi:10.1016/0305-0491(92)90182-Q CrossRefGoogle Scholar
  29. McFall-Ngai M, Hadfield MG, Bosch TCG et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110:3229–3236. doi:10.1073/pnas.1218525110 CrossRefGoogle Scholar
  30. Menon R, Watson SE, Thomas LN et al (2013) Diet complexity and estrogen receptor β status affect the composition of the murine intestinal microbiota. Appl Environ Microbiol 79:5763–5773. doi:10.1128/AEM.01182-13 CrossRefGoogle Scholar
  31. Metaxas A (2013) Larval ecology, settlement, and recruitment of Asteroids. In: Lawrence JM (ed) Starfish: biology and ecology of the Asteroidea. The Johns Hopkins University Press, Baltimore, pp 59–66Google Scholar
  32. Pedrós-Alió C (2012) The rare bacterial biosphere. Ann Rev Mar Sci 4:449–466. doi:10.1146/annurev-marine-120710-100948 CrossRefGoogle Scholar
  33. Rao PS, Rao KH, Shyamasundari K (1993) A rare condition of budding in bipinnaria larva (Asteroidea). Curr Sci 65:792–793Google Scholar
  34. Roberts D, Billet DSM, McCartney G, Hayes GE (1991) Procaryotes on the tentacles of deep-sea holothurians: a novel form of dietary supplementation. Limnol Oceanogr 36:1447–1451. doi:10.4319/lo.1991.36.7.1447 CrossRefGoogle Scholar
  35. Robertson BR, Tezuka NR, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–871. doi:10.1099/00207713-51-3-861 CrossRefGoogle Scholar
  36. Rogers-Bennett L, Rogers DW (2008) Modeling dispersal of cloning echinoderm larvae with a gaussian distribution: forever young? CalCOFI Rep 49:232–240Google Scholar
  37. Sjöstedt J, Martiny JBH, Munk P, Riemann L (2014) Abundance of broad bacterial taxa in the sargasso sea explained by environmental conditions but not water mass. Appl Environ Microbiol 80:2786–2795. doi:10.1128/AEM.00099-14 CrossRefGoogle Scholar
  38. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446 CrossRefGoogle Scholar
  39. Steindler L, Huchon D (2005) 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol 71:4127–4131. doi:10.1128/AEM.71.7.4127 CrossRefGoogle Scholar
  40. Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS ONE 5:e9554. doi:10.1371/journal.pone.0009554 CrossRefGoogle Scholar
  41. Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi:10.1126/science.1261359 CrossRefGoogle Scholar
  42. Vaughn D, Strathmann RR (2008) Predators induce cloning in echinoderm larvae. Science 319:1503. doi:10.1126/science.1151995 CrossRefGoogle Scholar
  43. Vickery MS, McClintock JB (2000) Effects of food concentration and availability on the incidence of cloning in planktotrophic larvae of the sea star Pisaster ochraceus. Biol Bull 199:298. doi:10.2307/1543186 CrossRefGoogle Scholar
  44. Walker CW, Lesser MP (1989) Nutrition and development of brooded embryos in the brittlestar Amphipholis squamata: do endosymbiotic bacteria play a role? Mar Biol 103:519–530. doi:10.1007/BF00399584 CrossRefGoogle Scholar
  45. Webster NS, Taylor MW, Behnam F et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12:2070–2082. doi:10.1111/j.1462-2920.2009.02065.x Google Scholar
  46. Wiese J, Thiel V, Gärtner A et al (2009) Kiloniella laminariae gen. nov., sp. nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina. Int J Syst Evol Microbiol 59:350–356. doi:10.1099/ijs.0.001651-0 CrossRefGoogle Scholar
  47. Wietz M, Gram L, Jørgensen B, Schramm A (2010) Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat Microb Ecol 61:179–189. doi:10.3354/ame01443 CrossRefGoogle Scholar
  48. Wolfe K, Graba-Landry A, Dworjanyn SA, Byrne M (2015) Larval phenotypic plasticity in the boom-and-bust crown-of-thorns seastar, Acanthaster planci. Mar Ecol Prog Ser 539:179–189. doi:10.3354/meps11495 CrossRefGoogle Scholar
  49. Wright ES, Yilmaz LS, Ram S et al (2014) Exploiting extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly identical DNA templates. Environ Microbiol 16:1354–1365. doi:10.1111/1462-2920.12259 CrossRefGoogle Scholar
  50. Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735. doi:10.1111/j.1574-6976.2008.00123.x CrossRefGoogle Scholar
  51. Zwirglmaier K, Jardillier L, Ostrowski M et al (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161. doi:10.1111/j.1462-2920.2007.01440.x Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Madeline R. Galac
    • 1
  • Isidro Bosch
    • 2
  • Daniel A. Janies
    • 1
  1. 1.Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.Department of BiologyState University of New York at GeneseoGeneseoUSA

Personalised recommendations