Marine Biology

, 163:140 | Cite as

Effects of an invasive mussel, Arcuatula senhousia, on local benthic consumers: a laboratory 13C‐labeling study

  • S. ComoEmail author
  • A. Pais
  • P. Rumolo
  • S. Saba
  • M. Sprovieri
  • P. Magni
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species


Filter-feeding bivalves play an important ecological role in aquatic systems through benthic–pelagic coupling. However, the mechanisms by which invasive mussels influence the food uptake by local consumers are little known. We tested the interactive effects of the invasive mussel Arcuatula senhousia and the native clam Ruditapes decussatus on the uptake of 13C-enriched microalgae, Isochrysis sp., by two polychaetes, the surface deposit feeder Cirriformia tentaculata and the sub-surface deposit feeder Phylo foetida. Polychaetes were exposed to two different densities of A. senhousia and R. decussatus used alone or together. In each treatment, the 13C-concentration throughout the sediment horizon (0–0.5, 0.5–2.5 and 2.5–5 cm) was also quantified. Results showed that, irrespective of bivalve densities, the 13C-uptake by C. tentaculata was lower in the presence of the two bivalves together than in the presence of one bivalve species (either A. senhousia or R. decussatus). This was consistent with decreased 13C-concentrations in the 0–0.5 cm sediment layer in the treatment with the two bivalves together. Contrary to C. tentaculata, no changes were observed among treatments in the 13C-uptake by P. foetida. This possibly reflected a limited 13C-enrichment of the lower sediment layers. Our main findings are: (1) A. senhousia reduces the 13C-uptake by R. decussatus, and (2) A. senhousia reduces the availability of phytoplankton-derived C for deposit feeders by impairing the feeding, incorporation and bio-deposition of R. decussatus. We conclude that the interaction of A. senhousia with native bivalves needs to be taken into consideration in future food web studies.


Phytoplankton Bivalve Polychaete Algal Cell Deposit Feeder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors are grateful to Elena Maggi, Lisandro Benedetti-Cecchi, Tasman Crowe and Giovanni De Falco for their comments and discussion during various stages of this work, and to Giovanni Fenzi, Andrea Satta and Fabio Antognarelli for their help in the field and in the laboratory. We sincerely thank two anonymous reviewers for their helpful comments on the manuscript. This work is a contribution to the EU FP7 project VECTORS (Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors; Grant Agreement No. 266445) and to the Flagship Project RITMARE—The Italian Research for the Sea—coordinated by the Italian National Research Council within the National Research Program 2011–2013.


  1. Amouroux JM, Amourous J, Bastide J, Cachet G (1990) Interrelations in a microcosm with a suspension-feeder and a deposit-feeder. 1: experimental study. Oceanol Acta 13:61–68Google Scholar
  2. Benedetti-Cecchi L (2004) Increasing accuracy of causal inference in experimental analyses of biodiversity. Funct Ecol 18:761–768CrossRefGoogle Scholar
  3. Benedetti-Cecchi L (2006) Understanding the consequences of changing biodiversity on rocky shores: How much have we learned from past experiments? J Exp Mar Biol Ecol 338:193–204CrossRefGoogle Scholar
  4. Cannas A (2010) Dinamica di popolazione di Ruditapes decussatus (L) e insediamento di Ruditapes philippinarum (Adam & Reeve) in Sardegna (Italia). Ph.D. thesis, Università degli Studi di Cagliari, Italy (in Italian)Google Scholar
  5. Chessa LA, Paesanti F, Pais A, Scardi M, Serra S, Vitale L (2005) Perspectives for development of low impact aquaculture in a Western Mediterranean lagoon: the case of the carpet clam Tapes decussatus. Aquac Int 13:147–155CrossRefGoogle Scholar
  6. Como S, Magni P (2009) Temporal changes of a macrobenthic assemblage in harsh lagoon sediments. Estuar Coast Shelf Sci 83:638–646CrossRefGoogle Scholar
  7. Como S, Magni P, Casu D, Floris A, Giordani G, Natale S, Fenzi GA, Signa G, De Falco G (2007) Sediment characteristics and macrofauna distribution along a human-modified inlet in the Gulf of Oristano (Sardinia, Italy). Mar Pollut Bull 54:733–744CrossRefGoogle Scholar
  8. Como S, Magni P, Baroli M, Casu D, De Falco G, Floris A (2008) Comparative analysis of macrofaunal species richness and composition in Posidonia oceanica, Cymodocea nodosa and leaf litter beds. Mar Biol 153:1087–1101CrossRefGoogle Scholar
  9. Como S, Floris A, Pais A, Rumolo P, Saba S, Sprovieri M, Magni P (2015) Assessing the impact of the Asian mussel Arcuatula senhousia in the recently invaded Oristano Lagoon-Gulf System (W Sardinia, Italy). Estuar Coast Shelf Sci. doi: 10.1016/j.ecss.2015.11.024 Google Scholar
  10. Cosentino A, Giacobbe S (2008) Distribution and functional response of sublittoral soft bottom assemblages to sedimentary constraints. Estuar Coast Shelf Sci 79:263–276CrossRefGoogle Scholar
  11. Creese R, Hooker S, DeLuca S, Wharton W (1997) Ecology and environmental impact of Musculista senhousia (Mollusca: Bivalvia: Mytilidae) in Tamaki Estuary, Auckland, New Zealand. New Zeal J Mar Fresh 31:225–236CrossRefGoogle Scholar
  12. Crooks JA (1996) The population ecology of an exotic mussel Musculista senhousia, in a southern California bay. Estuaries 19:42–45CrossRefGoogle Scholar
  13. Crooks JA (1998) Habitat alteration and community-level effects of an exotic mussel, Musculista senhousia. Mar Ecol Prog Ser 162:137–152CrossRefGoogle Scholar
  14. Crooks JA (2001) Assessing invader effects within changing ecosystems: historical and experimental perspectives on the role of an exotic mussel in an urbanized lagoon. Biol Invasions 3:23–36CrossRefGoogle Scholar
  15. Crooks JA (2002) Characterizing ecosystem-level consequences of biological invasions: the role of ecosystem engineers. Oikos 97:153–166CrossRefGoogle Scholar
  16. Crooks JA, Khim HS (1999) Architectural vs. biological effects of a habitat-altering, exotic mussel, Musculista senhousia. J Exp Mar Biol Ecol 240:53–75CrossRefGoogle Scholar
  17. DAISIE (2009) European Invasive Alien Species Gateway. Accessed 27 Nov 2015
  18. De Troch M, Steinarsdóttir MB, Chepurnov V, Ólafsson E (2005) Grazing on diatoms by harpacticoid copepods: species-specific density-dependent uptake and microbial gardening. Aquat Microb Ecol 39:135–144CrossRefGoogle Scholar
  19. De Troch M, Boeckx P, Cnudde C, Van Gansbeke D, Vanreusel A, Vincx M, Caramujo MJ (2012) Bioconversion of fatty acids at the basis of marine food webs: insights from a compound-specific stable isotope analysis. Mar Ecol Prog Ser 465:53–67CrossRefGoogle Scholar
  20. Gergs R, Rinke K, Rothhaupt KO (2009) Zebra mussels mediate benthic–pelagic coupling by biodeposition and changing detrital stoichiometry. Freshw Biol 54:1379–1391CrossRefGoogle Scholar
  21. Gergs R, Grey J, Rothhaupt KO (2011) Temporal variations in zebra mussel (Dreissena polymorpha) density structure the benthic food web and community composition on hard substrates in Lake Constance, Germany. Biol Invasions 13:2727–2738CrossRefGoogle Scholar
  22. Helm MM, Bourne N (2004) Hatchery culture of bivalves: a practical manual. FAO Fisheries Technical Paper 471. FAO, Rome, 201 ppGoogle Scholar
  23. Jumars PA, Dorgan KM, Lindsay SM (2015) Diet of worms emended: an update of polychaete feeding guilds. Annu Rev Mar Sci 7:497–520CrossRefGoogle Scholar
  24. Kushner RB (2005) The effects of the introduced Asian mussel Musculista senhousia in native bivalve growth and survival in Southern California. PhD dissertation, San Diego State UniversityGoogle Scholar
  25. Lardicci C, Como S, Corti S, Rossi F (2001) Changes and recovery of macrozoobenthic communities after restoration measures of the Orbetello Lagoon (Tyrrhenian coast, Italy). Aquat Conserv Mar Freshw Ecosyst 11:281–287CrossRefGoogle Scholar
  26. Magni P, Montani S, Takada C, Tsutsumi H (2000) Temporal scaling and relevance of bivalve nutrient excretion on a tidal flat of the Seto Inland Sea, Japan. Mar Ecol Prog Ser 198:139–155CrossRefGoogle Scholar
  27. Magni P, Como S, Montani S, Tsutsumi H (2006) Interlinked temporal changes in environmental conditions, chemical characteristics of sediments and macrofaunal assemblages in an estuarine intertidal sandflat (Seto Inland Sea, Japan). Mar Biol 149:1185–1197CrossRefGoogle Scholar
  28. Magni P, Como S, Montani S, Tsutsumi H (2014) Interlinked seasonal variation in biogenic nutrient fluxes and pore-water nutrient concentrations in intertidal sediments. Mar Biol 161:2767–2779CrossRefGoogle Scholar
  29. Maria TF, De Troch M, Vanaverbeke J, Esteves AM, Vanreusel A (2011) Use of benthic vs planktonic organic matter by sandy-beach organisms: a food tracing experiment with 13C labelled diatoms. J Exp Mar Biol Ecol 407:309–314CrossRefGoogle Scholar
  30. McDonald JI, Wells FE (2010) The apparent demise of the Asian date mussel Musculista senhousia in Western Australia: or using acts of god as an eradication tool. Biol Invasions 12(4):715–719CrossRefGoogle Scholar
  31. Mermillod-Blondin F, François-Carcaillet F, Rosenberg R (2005) Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. J Exp Mar Biol Ecol 315:187–209CrossRefGoogle Scholar
  32. Middelburg JJ (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371CrossRefGoogle Scholar
  33. Middelburg JJ, Barranguet C, Boschker TS, Herman PMJ, Moens T, Heip CHR (2000) The fate of intertidal microphytobenthos carbon: an in situ 13C-labelling study. Limnol Oceanogr 45:1224–1234CrossRefGoogle Scholar
  34. Mistri M (2002) Ecological characteristics of the invasive Asian date mussel, Musculista senhousia, in the Sacca di Goro (Adriatic Sea, Italy). Estuaries 25:431–440CrossRefGoogle Scholar
  35. Mistri M, Munari C (2013) The invasive bag mussel Arcuatula senhousia is a CO2 generator in near-shore coastal ecosystems. J Exp Mar Biol Ecol 440:164–168CrossRefGoogle Scholar
  36. Mistri M, Modugno S, Rossi R (2003) Sediment organic matter and its nutritional quality: a short-term experiment with two exotic bivalve species. Chem Ecol 19:225–231CrossRefGoogle Scholar
  37. Morales Y, Weber LJ, Mynett AE, Newton TJ (2006) Mussel dynamics model: a hydroinformatics tool for analyzing the effects of different stressors on the dynamics of freshwater mussel communities. Ecol Model 197:448–460CrossRefGoogle Scholar
  38. Munari C (2008) Effects of an exotic invader on Mediterranean lagoonal communities. Hydrobiologia 611:29–43CrossRefGoogle Scholar
  39. Newell RIE (2004) Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. J Shellfish Res 23:51–61Google Scholar
  40. Nizzoli D, Welsh DT, Viaroli P (2011) Seasonal nitrogen and phosphorus dynamics during benthic clam and suspended mussel cultivation. Mar Poll Bull 62:1276–1287CrossRefGoogle Scholar
  41. Norkko A, Hewitt JE, Thrush SF, Greig A, Funnell T (2001) Benthic–pelagic coupling and suspension-feeding bivalves: linking site-specific sediment flux and biodeposition to benthic community structure. Limnol Oceanogr 46:2067–2072CrossRefGoogle Scholar
  42. O’Connor NE, Crowe TP (2005) Biodiversity loss and ecosystem functioning: distinguishing between number and identity of species. Ecology 86:1783–1796CrossRefGoogle Scholar
  43. Ozersky T, Evans DO, Barton DR (2012) Invasive mussels alter the littoral food web of a large lake: stable isotopes reveal drastic shifts in sources and flow of energy. PLoS ONE 7:e51249CrossRefGoogle Scholar
  44. Pascal PY, Dupuy C, Richard P, Niquil N (2008) Bacterivory in the common foraminifer Ammonia tepida: isotope tracer experiment and the controlling factors. J Exp Mar Biol Ecol 359:55–61CrossRefGoogle Scholar
  45. Ricciardi A, Whoriskey FG, Rasmussen JB (1995) Predicting the intensity and impact of Dreissena infestation on native unionid bivalves from Dreissena field density. Can J Fish Aquat Sci 52:1449–1461CrossRefGoogle Scholar
  46. Rilov G, Crooks JA (2009) Biological invasions in marine ecosystems ecological, management, and geographic perspectives, vol 204. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  47. Shull DH, Yasuda M (2001) Size-selective downward particle transport by cirratulid polychaetes. J Mar Res 59:453–473CrossRefGoogle Scholar
  48. Sousa R, Gutierrez JL, Aldridge DC (2009) Non-indigenous invasive bivalves as ecosystem engineers. Biol Invasions 11:2367–2385CrossRefGoogle Scholar
  49. Strayer DL (2014) Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735:277–292CrossRefGoogle Scholar
  50. Strayer DL, Malcom HM (2007) Effects of zebra mussels (Dreissena polymorpha) on native bivalves: the beginning of the end or the end of the beginning? J N Am Benthol Soc 26(1):111–122CrossRefGoogle Scholar
  51. Underwood AJ (1991) Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Aust J Mar Freshw Res 42:569–597CrossRefGoogle Scholar
  52. Underwood AJ (1997) Experiments in ecology. Their logical design and interpretation using analysis of variance. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • S. Como
    • 1
    Email author
  • A. Pais
    • 2
  • P. Rumolo
    • 3
  • S. Saba
    • 2
  • M. Sprovieri
    • 4
  • P. Magni
    • 1
  1. 1.Consiglio Nazionale delle RicercheIstituto per l’Ambiente Marino Costiero (CNR-IAMC)OristanoItaly
  2. 2.Laboratorio di Acquacoltura e Gestione delle Risorse Acquatiche, Sezione di Scienze Zootecniche, Dipartimento di AgrariaUniversità degli Studi di SassariSassariItaly
  3. 3.Consiglio Nazionale delle RicercheIstituto per l’Ambiente Marino Costiero (CNR-IAMC)NaplesItaly
  4. 4.Consiglio Nazionale delle RicercheIstituto per l’Ambiente Marino Costiero (CNR-IAMC)TrapaniItaly

Personalised recommendations