Skip to main content

Advertisement

Log in

Effects of sex and color phase on ion regulation in the invasive European green crab, Carcinus maenas

  • Invasive Species - Original paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The European green crab, Carcinus maenas, is a globally invasive species with detrimental impacts on the ecology and economy in affected areas, and the focus of many studies has been to examine both its ecology and physiology to gain a better understanding of this invasiveness. Green crabs exhibit a ventral color change from green to yellow then orange to red as they progress through intermolt. Previous studies documented red color phase males as less tolerant to environmental stress, but cellular- and molecular-level investigations into sex differences in regard to these color phases are lacking. In this study, red and green color phases of both sexes were exposed to low salinity (10 ppt) and assessed for whole animal performance, and indicators of cellular stress and energy status were measured in the gills as mRNA and protein expression. Red phase individuals exhibited poorer whole animal performance during low salinity exposure, where females outperformed males. Consistently, higher hemolymph osmolality in green phase animals was facilitated through increased mRNA expression of ion transport drivers in both sexes, but females showed elevated mRNA levels under control conditions with subsequently diminished upregulation during low salinity exposure. Differential physiological responses can have a significant impact on future invasions of this species. The approach in this study highlights the increased resilience of female animals in both color phases revealing that taking the molt cycle and sex-dependent variability into account is crucial for understanding and predicting the success of future invasions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

HSP70:

Heat-shock protein 70

References

  • Aagaard A (1996) In situ variation in heart rate of the shore crab Carcinus maenas in relation to environmental factors and physiological condition. Mar Biol 125:765–772. doi:10.1007/BF00349259

    Article  Google Scholar 

  • Abuhagr AM, MacLea KS, Chang ES, Mykles DL (2014a) Mechanistic target of rapamycin (mTOR) signaling genes in decapod crustaceans: cloning and tissue expression of mTOR, Akt, Rheb, and p70 S6 kinase in the green crab, Carcinus maenas, and blackback land crab, Gecarcinus lateralis. Comp Biochem Physiol A Mol Integr Physiol 168:25–39. doi:10.1016/j.cbpa.2013.11.008

    Article  CAS  Google Scholar 

  • Abuhagr AM, Blindert JL, Nimitkul S, Zander IA, Labere SM, Chang SA, Maclea KS, Chang ES, Mykles DL (2014b) Molt regulation in green and red color morphs of the crab Carcinus maenas: gene expression of molt-inhibiting hormone signaling components. J Exp Biol 217:796–808. doi:10.1242/jeb.093385

    Article  CAS  Google Scholar 

  • Aronson RB, Frederich M, Price R, Thatje S (2015) Prospects for the return of shell-crushing crabs to Antarctica. J Biogeogr 42:1–7

    Article  Google Scholar 

  • Carlton JT, Cohen AN (2003) Episodic global dispersal in shallow water marine organisms: the case history of the European shore crabs Carcinus maenas and C. aestuarii. J Biogeogr 30:1809–1820. doi:10.1111/j.1365-2699.2003.00962.x

    Article  Google Scholar 

  • Cohen AN, Carlton JT, Fountain MC (1995) Introduction, dispersal and potential impacts of the green crab Carcinus maenas in San Francisco Bay, California. Mar Biol 122:225–237. doi:10.1007/BF00348935

    Google Scholar 

  • Cohen AN, Weinstein A, Emmett MA, Lau W, Carlton JT (2001) Investigations into the introduction of non-indigenous marine organisms via the cross-continental trade in marine baitworms. Report for the U.S. Fish and Wildlife Service, Sacramento CA, 29 pp

  • Compton TJ, Leathwick JR, Inglis GJ (2010) Thermogeography predicts the potential global range of the invasive European green crab (Carcinus maenas). Divers Distrib 16:243–255. doi:10.1111/j.1472-4642.2010.00644.x

    Article  Google Scholar 

  • Crawford S (1999) Live rockweed (Ascophyllum) used as a shipping medium for the live transport of marine baitworms from Maine. Marketing and shipping live aquatic products. In: Paust B, Rice A (eds) Proceedings on 2nd international conference and exhibition, Seattle WA. University of Alaska Sea Grant Report No. AK-SG-01-03, pp 95–98

  • Crothers JH (1967) The biology of the shore crab Carcinus maenas (L.) 1. The background-anatomy, growth and life history. Field Stud 2:407–434

    Google Scholar 

  • Crothers JH (1968) The biology of the shore crab Carcinus maenas (L.) 2. The life of the adult crab. Field Stud 2:579–614

    Google Scholar 

  • Dam E, Styrishave B, Rewitz KF, Andersen O (2006) Intermoult duration affects the susceptibility of shore crabs Carcinus maenas (L.) to pyrene and their ability to metabolise it. Aquat Toxicol 80:290–297. doi:10.1016/j.aquatox.2006.09.006

    Article  CAS  Google Scholar 

  • Darling J (2011) More than one way to invade: lessons from genetic studies of Carcinus shore crabs. In: Galil B, Clark P, Carlton J (eds) In the wrong place—alien marine crustaceans: distribution, biology and impacts invading nature. Springer series in invasion ecology, vol 6, pp 661–685. doi:10.1007/978-94-007-0591-3_24

  • Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB (2008) Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol 17:4992–5007. doi:10.1111/j.1365-294X.2008.03978.x

    Article  CAS  Google Scholar 

  • Dejours P (1975) Principles of comparative respiratory physiology. Elsevier, New York, p 22

    Google Scholar 

  • Drew B, Miller D, Toop T, Hanna P (2001) Identification of expressed HSPs in blacklip abalone (Haliotis rubra Leach) during heat and salinity stresses. J Shellfish res 20:695–703

    Google Scholar 

  • Farrell P, Nelson K (2013) Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.). Environ Pollut 177:1–3. doi:10.1016/j.envpol.2013.01.046

    Article  CAS  Google Scholar 

  • Floyd T, Williams J (2004) Impact of green crab (Carcinus maenas L.) predation on a population of soft-shell clams (Mya arenaria L.) in the southern Gulf of St. Lawrence. J Shellfish Res 23:457–462

    Google Scholar 

  • Frederich M, O’Rourke MR, Furey NB, Jost JA (2009) AMP-activated protein kinase (AMPK) in the rock crab, Cancer irroratus: an early indicator of temperature stress. J Exp Biol 212:722–730. doi:10.1242/jeb.021998

    Article  CAS  Google Scholar 

  • Garbary DJ, Miller AG, Williams J, Seymour NR (2014) Drastic decline of an extensive eelgrass bed in Nova Scotia due to the activity of the invasive green crab (Carcinus maenas). Mar Biol 161:3–15. doi:10.1007/s00227-013-2323-4

    Article  Google Scholar 

  • Geck P, Heinz E (1986) The Na–K–2Cl cotransport system. J Membr Biol 91:97–105

    Article  CAS  Google Scholar 

  • Gonzalez CRM, Bradley BP (1994) Salinity stress proteins in Eurytemora affinis. Hydrobiologia 292(293):461–468. doi:10.1007/BF01925787

    Article  Google Scholar 

  • Goodchild CG, Frederich M, Zeeman SI (2016) Is altered behavior linked to cellular energy regulation in a freshwater mussel (Elliptio complanata) exposed to triclosan? J Comp Biochem Physiol 179:150–157. doi:10.1016/j.cbpc.2015.10.008

    CAS  Google Scholar 

  • Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21:48–60. doi:10.1152/physiol.00044.2005

    Article  CAS  Google Scholar 

  • Havird JC, Henry RP, Wilson AE (2013) Altered expression of Na+/K+-ATPase and other osmoregulatory genes in the gills of euryhaline animals in response to salinity transfer: a meta-analysis of 59 quantitative PCR studies over 10 years. Comp Biochem Physiol D Genom Proteom 8:131–140. doi:10.1016/j.cbd.2013.01.003

    CAS  Google Scholar 

  • Henry RP (1984) The role of carbonic anhydrase in blood ion and acid-base regulation. Am Zool 24:241–251. doi:10.1093/icb/24.1.241

    Article  CAS  Google Scholar 

  • Henry RP, Campoverde M (2006) Neuroendocrine regulation of carbonic anhydrase expression in the gills of the euryhaline green crab, Carcinus maenas. J Exp Zool 305A:663–668. doi:10.1002/jez.a.321

    Article  CAS  Google Scholar 

  • Henry RP, Garrelts EE, McCarty MM, Towle DW (2002) Differential induction of branchial carbonic anhydrase and Na+/K+ ATPase activity in the euryhaline crab, Carcinus maenas, in response to low salinity exposure. J Exp Zool 292:595–603

    Article  CAS  Google Scholar 

  • Henry RP, Gehnrich S, Weihrauch D, Towle DW (2003) Salinity-mediated carbonic anhydrase induction in the gills of the euryhaline green crab, Carcinus maenas. Comp Biochem Physiol Mol Integr Physiol 136:243–258. doi:10.1016/S1095-6433(03)00113-2

    Article  Google Scholar 

  • Henry RP, Thomason KL, Towle DW (2006) Quantitative changes in branchial carbonic anhydrase activity and expression in the euryhaline green crab, Carcinus maenas, in response to low salinity exposure. J Exp Zool 305A:842–850. doi:10.1002/jez.a.298

    Article  CAS  Google Scholar 

  • Henry RP, Lucu Č, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431. doi:10.3389/fphys.2012.00431

    Article  CAS  Google Scholar 

  • Hidalgo FJ, Barón PJ, Orensanz JM (2005) A prediction come true: the green crab invades the Patagonian coast. Biol Invasions 7:547–552. doi:10.1007/s10530-004-5452-3

    Article  Google Scholar 

  • Kaiser MJ, Hughes RN, Reid DG (1990) Chelal morphometry, prey-size selection and aggressive competition in green and red forms of Carcinus maenas (L.). J Exp Mar Biol Ecol 140:121–134. doi:10.1016/0022-0981(90)90086-R

    Article  Google Scholar 

  • Krang AS, Ekerholm M (2006) Copper reduced mating behaviour in male shore crabs (Carcinus maenas (L.)). Aquat Toxicol 80:60–69. doi:10.1016/j.aquatox.2006.07.014

    Article  CAS  Google Scholar 

  • Krarup T, Jakobsen LD, Jensen BS, Hoffmann EK (1998) Na+–K+–2Cl cotransport in Ehrlich cells: regulation by protein phosphatases and kinases. Am J Physiol Cell Physiol 275:C239–C250

    CAS  Google Scholar 

  • Lau W (1995) Importation of baitworms and shipping seaweed: vectors for introduced species? In: Sloan D, Christensen M, Kelso D (eds) Environmental issues: from a local to a global perspective. Environmental Sciences Group Major. University of California, Berkeley, pp 21–38

    Google Scholar 

  • Lee KT, McKnight A, Kellogg K, Juanes F (2003) Salinity tolerance in color phases of female green crabs, Carcinus maenas (Linnaeus, 1758). Crustaceana 76:247–253. doi:10.1163/156854003321824594

    Article  Google Scholar 

  • Lee KT, Jivoff P, Bishop RE (2005) A low cost, reliable method for quantifying coloration in Carcinus maenas (Linnaeus, 1758) (Decapoda, Brachyura). Crustaceana 78:579–590. doi:10.1163/156854005774318097

    Article  Google Scholar 

  • Legeay A, Massabuau J (2000) The ability to feed in hypoxia follows a seasonally dependent pattern in shore crab Carcinus maenas. J Exp Mar Bio Ecol 247:113–129

    Article  Google Scholar 

  • Leignel V, Stillman JH, Baringou S, Thabet R, Metais I (2014) Overview on the European green crab Carcinus spp. (Portunidae, Decapoda), one of the most famous marine invaders and ecotoxicological models. 21:9129–9144. doi:10.1007/s11356-014-2979-4

  • Ma M, Bors EK, Dickinson ES, Kwiatkowski MA, Sousa GL, Henry RP, Smith CM, Towle DW, Christie AE, Li L (2009) Characterization of the Carcinus maenas neuropeptidome by mass spectrometry and functional genomics. Gen Comp Endocrinol 161:320–334. doi:10.1016/j.ygcen.2009.01.015

    Article  CAS  Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Mantel LH (ed) Biology of Crustacea. Academic Press, New York, pp 53–161

    Google Scholar 

  • McGaw IJ, Naylor E (1992a) Distribution and rhythmic locomotor patterns of estuarine and open-shore populations of Carcinus maenas. J Mar Biol Assoc 72:599–609. doi:10.1017/S0025315400059373

    Article  Google Scholar 

  • McGaw IJ, Naylor E (1992b) Salinity preference of the shore crab Carcinus maenas in relation to coloration during intermoult and to prior acclimation. J Exp Mar Biol Ecol 155:145–159. doi:10.1016/0022-0981(92)90059-J

    Article  Google Scholar 

  • McGaw IJ, Kaiser M, Naylor E (1992) Intraspecific morphological variation related to the moult-cycle in colour forms of the shore crab Carcinus maenas. J Zool 228:351–359. doi:10.1111/j.1469-7998.1992.tb04614.x

    Article  Google Scholar 

  • McKnight A, Mathews LM, Avery R, Lee KT (2000) Notes and news distribution is correlated with color phase in green crabs, Carcinus maenas (linnaeus, 1758) in Southern New England. Crustaceana 73:763–768

    Article  Google Scholar 

  • McNamara JC, Faria SC (2012) Evolution of osmoregulatory patterns and gill ion transport mechanisms in the decapod Crustacea: a review. J Comp Physiol B 182:997–1014. doi:10.1007/s00360-012-0665-8

    Article  CAS  Google Scholar 

  • Meng X-L, Dong Y-W, Dong S-L, Yu S-S, Zhou X (2011) Mortality of the sea cucumber, Apostichopus japonicus Selenka, exposed to acute salinity decrease and related physiological responses: osmoregulation and heat shock protein expression. Aquaculture 316:88–92. doi:10.1016/j.aquaculture.2011.03.003

    Article  CAS  Google Scholar 

  • Nagaraju GPC, Borst DW (2008) Methyl farnesoate couples environmental changes to testicular development in the crab Carcinus maenas. J Exp Biol 211:2773–2778. doi:10.1242/jeb.019133

    Article  CAS  Google Scholar 

  • O’Grady DF, Jury SH, Waston WH (2002) Use of a treadmill to study the relationships between walking, ventilation and heart rate in the lobster Homarus americanus. Mar Freshw Res 52:1387–1394. doi:10.1071/MF01088

    Article  Google Scholar 

  • Péqueux A (1995) Osmotic regulation in crustaceans. J Crustacean Biol 15:1–60. doi:10.1163/193724095X00578

    Article  Google Scholar 

  • Pringle JM, Blakeslee AMH, Byers JE, Roman J (2011) Asymmetric dispersal allows an upstream region to control population structure throughout a species’ range. Proc Natl Acad Sci USA 108:15288–15293. doi:10.1073/pnas.1100473108

    Article  CAS  Google Scholar 

  • Reid DG, Aldrich JC (1989) Variations in response to environmental hypoxia of different colour forms of the shore crab, Carcinus maenas. Comp Biochem Phys A 92:535–539. doi:10.1016/0300-9629(89)90361-7

    Article  Google Scholar 

  • Reid D, Abello P, McGaw I, Naylor E (1989) Phenotypic variation in sympatric crab populations. In: Aldrich JC (ed) Phenotypic responses and individuality in aquatic ectotherms. JAPAGA Ashford, Co., Wicklow, pp 89–96

    Google Scholar 

  • Reid DG, Abello P, Kaiser MJ, Warman CG (1997) Carapace colour, inter-moult duration and the behavioural and physiological ecology of the shore crab Carcinus maenas. Estuar Coast Shelf S 44:203–211. doi:10.1006/ecss.1996.0212

    Article  Google Scholar 

  • Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles AL, Geny B, Lignot JH (2016) Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function? J Exp Biol 219:80–89. doi:10.1242/jeb.128595

    Article  Google Scholar 

  • Roman J (2006) Diluting the founder effect: cryptic invasions expand a marine invader’s range. Proc R Soc B Biol Sci 273:2453–2459. doi:10.1098/rspb.2006.3597

    Article  Google Scholar 

  • Serrano L, Henry RP (2008) Differential expression and induction of two carbonic anhydrase isoforms in the gills of the euryhaline green crab, Carcinus maenas, in response to low salinity. Comp Biochem Phys D 3:186–193. doi:10.1016/j.cbd.2008.02.003

    Google Scholar 

  • Sokolova IM, Frederich M, Bagwe R, Lannig G, Sukhotin AA (2012) Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates. Mar Environ Res 79:1–15. doi:10.1016/j.marenvres.2012.04.003

    Article  CAS  Google Scholar 

  • Stillman JH, Colbourne JK, Lee CE, Patel NH, Phillips MR, Towle DW, Eads BD, Gelembuik GW, Henry RP, Johnson EA, Pfrender ME, Terwilliger NB (2008) Recent advances in crustacean genomics. Integr Comp Biol 48:852–868. doi:10.1093/icb/icn096

    Article  Google Scholar 

  • Stover KK, Burnett KG, McElroy EJ, Burnett LE (2013) Locomotory fatigue during moderate and severe hypoxia and hypercapnia in the Atlantic blue crab, Callinectes sapidus. Biol Bull 224:68–78

    Google Scholar 

  • Styrishave B, Aagaard A, Andersen O (1999) In situ studies on physiology and behaviour in two colour forms of the shore crab Carcinus maenas in relation to season. Mar Ecol Prog Ser 189:221–231. doi:10.3354/meps189221

    Article  Google Scholar 

  • Styrishave B, Faldborg Petersen M, Andersen O (2000) Influence of cadmium accumulation and dietary status on fatty acid composition in two colour forms of shore crabs, Carcinus maenas. Mar Biol 137:423–433. doi:10.1007/s002270000346

    Article  CAS  Google Scholar 

  • Styrishave B, Rewitz K, Andersen O (2004) Frequency of moulting by shore crabs Carcinus maenas (L.) changes their colour and their success in mating and physiological performance. J Exp Mar Biol Ecol 313:317–336. doi:10.1016/j.jembe.2004.08.013

    Article  Google Scholar 

  • Taylor GM, Keyghobadi N, Schmidt PS (2009) The geography of crushing: variation in claw performance of the invasive crab Carcinus maenas. J Exp Mar Biol Ecol 377:48–53. doi:10.1016/j.jembe.2009.06.022

    Article  Google Scholar 

  • Tepolt CK, Somero GN (2014) Master of all trades: thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. J Exp Biol 217:1129–1138. doi:10.1242/jeb.093849

    Article  Google Scholar 

  • Thibodeaux LK, Burnett KG, Burnett LE (2009) Energy metabolism and metabolic depression during exercise in Callinectes sapidus, the Atlantic blue crab: effects of the bacterial pathogen Vibrio campbellii. J Exp Biol 212:3428–3439. doi:10.1242/jeb.033431

    Article  CAS  Google Scholar 

  • Towle DW, Weihrauch D (2001) Osmoregulation by gills of the euryhaline crabs: molecular analysis of transporters. Am Zool 41:770–780. doi:10.1668/0003-1569(2001)041[0770:OBGOEC]2.0.CO;2

    CAS  Google Scholar 

  • Towle DW, Henry RP, Terwilliger NB (2011) Microarray-detected changes in gene expression in gills of green crabs (Carcinus maenas) upon dilution of environmental salinity. Comp Biochem Phys D 6:115–125. doi:10.1016/j.cbd.2010.11.001

    Google Scholar 

  • Webster SG (1986) Neurohormonal control of ecdysteroid biosynthesis by Carcinus maenas Y-organs in vitro, and preliminary characterization of the putative molt-inhibiting hormone (MIH). Gen Comp Endocrinol 61:237–247. doi:10.1016/0016-6480(86)90201-7

    Article  CAS  Google Scholar 

  • Wolf F (1998) Red and green colour forms in the common shore crab Carcinus maenas (L.) (Crustacea: Brachyura: Portunidae): theoretical predictions and empirical data. J Nat Hist 32:1807–1812. doi:10.1080/00222939800771311

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Shaun Gill for building and maintaining the treadmill, and Angela Cicia and Casey Toombs for assistance in the lab. This project was funded by National Science Foundation Grant NSF IOB-0640478 to M.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Frederich.

Additional information

Responsible Editor: J. H. Stillman.

Reviewed by Undisclosed experts.

This article is part of the Topical Collection on Invasive Species.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennoyer, K.E., Himes, A.R. & Frederich, M. Effects of sex and color phase on ion regulation in the invasive European green crab, Carcinus maenas . Mar Biol 163, 137 (2016). https://doi.org/10.1007/s00227-016-2910-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-016-2910-2

Keywords

Navigation