Advertisement

Marine Biology

, 163:98 | Cite as

No loss of genetic diversity in the exploited and recently collapsed population of Bay of Biscay anchovy (Engraulis encrasicolus, L.)

  • Iratxe Montes
  • Mikel Iriondo
  • Carmen Manzano
  • Maria Santos
  • Darrell Conklin
  • Gary R. Carvalho
  • Xabier Irigoien
  • Andone EstonbaEmail author
Original paper

Abstract

The European anchovy, Engraulis encrasicolus, in the Bay of Biscay suffered a collapse in census population size (N c) starting in 2002, from which it did not recover until 2010. The slow recovery raised concern over sustainability, potential reduction in adaptive potential, and vulnerability to local extirpation. Long- and short-term effective population size (N e), N e/N c ratio, and other genetic parameters were estimated to evaluate demographic signals of population decline. A total of 349 neutral single-nucleotide polymorphisms (SNPs) were screened in 330 anchovy individuals from the Bay of Biscay distributed across a 20-year period. We show that N c fluctuations have not significantly affected short-term N e, and therefore, genetic diversity has remained stable throughout the recent collapse. This study illustrates that N e estimates should be incorporated into management plans. Our results on short-term N e suggested that the anchovy in the Bay of Biscay has not faced any recent severe threat of losing evolutionary potential due to genetic drift. However, differences between short- and long-term N e estimates suggested that the Bay of Biscay anchovy population may be currently much smaller than in the historical past.

Keywords

Effective Population Size Last Glacial Maximum Adaptive Potential European Anchovy Small Pelagic Species 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank for technical and human support provided by Sequencing and Genotyping SGIker unit of UPV/EHU and European funding (ERDF and ESF). Dave Bembo provided the sample from the year 1993. The authors gratefully acknowledge the experienced advice from Jennifer Ovenden and Robin S. Waples for estimating N e through the temporal method. This research was supported by the project ECOGENBAY (MICINN CTM2009-13570-C02-02) funded by the Ministry of Science and Research of the Government of Spain, by the Genomic-Resources Research Group from the Basque University System (IT558-10) supported by the Department of Education, Universities and Research of the Basque Government, and by a Research Grant (3571/2008) from the University of the Basque Country (UPV/EHU). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Supplementary material

227_2016_2866_MOESM1_ESM.pdf (51 kb)
Biological parameters for each cohort used for estimating the generation length (G) (Felsenstein (1971). The parameters include the probability that a gene in an individual was inherited from a parent of age i (pi). This parameter was provided by AZTI technological center (PDF 50 kb)
227_2016_2866_MOESM2_ESM.pdf (481 kb)
Allele frequencies and expected and observed heterozygosities of the 349 SNPs for each cohort (PDF 480 kb)
227_2016_2866_MOESM3_ESM.pdf (122 kb)
Call rates for the 349 SNPs in each cohort (PDF 122 kb)
227_2016_2866_MOESM4_ESM.pdf (41 kb)
Pairwise F ST values between cohorts (below the diagonal) and p values (above the diagonal) (PDF 40 kb)

References

  1. Albaina A, Irigoien X, Aldalur U, Boyra G, Santos M, Estonba A (2014) Macrozooplankton predation impact on anchovy (Engraulis encrasicolus) eggs mortality at the Bay of Biscay shelf break spawning centre. ICES J Mar Sci. doi: 10.1093/icesjms/fsu205 Google Scholar
  2. Albaina A, Irigoien X, Aldalur U, Cotano U, Santos M, Boyra G, Estonba A (2015a) A real-time PCR assay to estimate invertebrate and fish predation on anchovy eggs in the Bay of Biscay. Prog Oceanogr 131:82–99. doi: 10.1016/j.pocean.2014.12.002 CrossRefGoogle Scholar
  3. Albaina A, Irigoien X, Aldalur U, Boyra G, Santos M, Estonba A (2015b) Macrozooplankton predation impact on anchovy (Engraulis encrasicolus) eggs mortality at the Bay of Biscay shelf break spawning centre. ICES J Mar Sci 72(5):1370–1379. doi: 10.1093/icesjms/fsu205 CrossRefGoogle Scholar
  4. Araki H, Waples RS, Blouin MS (2007) A potential bias in the temporal method for estimating Ne in admixed populations under natural selection. Mol Ecol 16(11):2261–2271. doi: 10.1111/j.1365-294X.2007.03307.x CrossRefGoogle Scholar
  5. Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773Google Scholar
  6. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98(8):4563–4568. doi: 10.1073/pnas.081068098 CrossRefGoogle Scholar
  7. Borja A, Bricker SB, Dauer DM, Demetriades NT, Ferreira JG, Forbes AT, Hutchings P, Jia X, Kenchington R, Marques JC, Zhu C (2008) Overview of integrative tools and methods in assessing ecological integrity in estuarine and coastal systems worldwide. Mar Poll Bull 56:1519–1537. doi: 10.1016/j.marpolbul.2008.07.005 CrossRefGoogle Scholar
  8. Chapman RW, Ball AO, Mash LR (2002) Spatial homogeneity and temporal heterogeneity of red drum, Sciaenops ocellatus, microsatellites: effective population sizes and management implications. Mar Biotechnol 4:589–603. doi: 10.1007/s10126-002-0038-5 CrossRefGoogle Scholar
  9. Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205. doi: 10.1038/nrg2526 CrossRefGoogle Scholar
  10. Chouvelon T, Chappuis A, Bustamante P, Lefebvre F, Mornet F, Guillou G, Violamer L, Dupuy C (2014) Trophic ecology of European sardine Sardina pilchardus and European anchovy Engraulis encrasicolus in the Bay of Biscay (north-east Atlantic) inferred from δ13C and δ15N values of fish and identified mesozooplanktonic organisms. J Sea Res 85:277–291. doi: 10.1016/j.seares.2013.05.011 CrossRefGoogle Scholar
  11. Chouvelon T, Violamer L, Dessier A, Bustamante P, Mornet F, Pignon-Mussaud C, Dupuy C (2015) Small pelagic fish feeding patterns in relation to food resource variability: an isotopic investigation for Sardina pilchardus and Engraulis encrasicolus from the Bay of Biscay (north-east Atlantic). Mar Biol 162(1):15–37. doi: 10.1007/s00227-014-2577-5 CrossRefGoogle Scholar
  12. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144(4):2001–2014Google Scholar
  13. Crnokrak P, Roff DA (1999) Inbreeding depression in the wild. Heredity 83:260–270. doi: 10.1038/sj.hdy.6885530 CrossRefGoogle Scholar
  14. Cubillos LA, Bucarey DA, Canales M (2002) Monthly abundance estimation for common sardine, Strangomera bentincki and anchovy Engraulis rigens, in the central-southern area off Chile (34–40°S). Fish Res 57:117–130CrossRefGoogle Scholar
  15. David P, Jarne P (1997) Context-dependent survival differences among electrophoretic genotypes in natural populations of the marine bivalve Spisula ovalis. Genetics 146:335–344Google Scholar
  16. DeFaveri J, Viitaniemi H, Leder E, Merilä J (2013) Characterizing genic and nongenic molecular markers: comparison of microsatellites and SNPs. Mol Ecol Resour 13(3):377–392. doi: 10.1111/1755-0998.12071 CrossRefGoogle Scholar
  17. Diaz M, Wethey D, Bulak J, Ely B (2000) Effect of harvest and effective population size on genetic diversity in a striped bass population. Trans Am Fish Soc 129:1367–1372. doi: 10.1577/1548-8659(2000)129<1367:EOHAEP>2.0.CO;2 CrossRefGoogle Scholar
  18. Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014a) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14(1):209–214. doi: 10.1111/1755-0998.12157 CrossRefGoogle Scholar
  19. Do KT, Lee JH, Lee HK, Kim J, Park KD (2014b) Estimation of effective population size using single-nucleotide polymorphism (SNP) data in Jeju horse. J Anim Sci Technol 56:28. doi: 10.1186/2055-0391-56-28 CrossRefGoogle Scholar
  20. Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 68:581–597Google Scholar
  21. Frankham R (1999) Quantitative genetics in conservation biology. Genet Res 74:237–244CrossRefGoogle Scholar
  22. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140. doi: 10.1016/j.biocon.2005.05.002 CrossRefGoogle Scholar
  23. Gattepaille LM, Jakobsson M, Blum MGB (2013) Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110:409–419. doi: 10.1038/hdy.2012.120 CrossRefGoogle Scholar
  24. Gomez-Uchida D, Banks MA (2006) Estimation of effective population size for the long-lived darkblotched rockfish Sebastes crameri. J Hered 97:603–606. doi: 10.1093/jhered/esl042 CrossRefGoogle Scholar
  25. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices, Version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm. Version 2.9.3.2 updated in 2002
  26. Guichoux E, Lagache L, Wagner S, Chaumeil P, Leger P, Lepais O, Lepoittevin C, Malausa T, Revardel E, Salin F, Petit RJ (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. doi: 10.1111/j.1755-0998.2011.03014.x CrossRefGoogle Scholar
  27. Hare MP, Nunney L, Schwartz MK, Ruzzante DE, Burford M, Waples RS, Ruegg K, Palstra F (2011) Understanding and estimating effective population size for a practical application in marine species management. Conserv Biol 25(3):438–449. doi: 10.1111/j.1523-1739.2010.01637.x CrossRefGoogle Scholar
  28. Hauser L, Ward RD (1998) Population identification in pelagic fish: the limits of molecular markers. In: Carvalho GR (ed) Advances in Mol Ecol. IOS Press, Amsterdam (NTL), pp. 191–224Google Scholar
  29. Hauser L, Adcock GJ, Smith PJ, Bernal Ramírez JH, Carvalho GR (2002) Loss of microsatellite diversity and low effective population size in an overexploited population of New Zealand snapper (Pagrus auratus). Proc Natl Acad Sci USA 99:11742–11747. doi: 10.1073/pnas.172242899 CrossRefGoogle Scholar
  30. Helfman GS (2007) Fish conservation: a guide to understanding and restoring global aquatic biodiversity and fishery resources. Island Press, Washington, D.C. (608 pp) Google Scholar
  31. Hoarau G, Boon E, Jongma DN, Ferber S, Palsson J, Van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2005) Low effective population size and evidence for inbreeding in an overexploited flatfish, plaice (Pleuronectes platessa L.). Proc R Soc B 272:497–503. doi: 10.1098/rspb.2004.2963 CrossRefGoogle Scholar
  32. Hughes AL (2010) Reduced microsatellite heterozygosity in island endemics supports the role of long-term effective population size in avian microsatellite diversity. Genetica 138(11–12):1271–1276. doi: 10.1007/s10709-010-9527-z CrossRefGoogle Scholar
  33. Hutchinson WF, van Oosterhout C, Rogers SI, Carvalho GR (2003) Temporal analysis of archived samples indicates marked genetic changes in declining North Sea cod (Gadus morhua). Proc R Soc B 270:2125–2132. doi: 10.1098/rspb.2003.2493 CrossRefGoogle Scholar
  34. ICES (2001) Report of the working group on the assessment of Mackerel, Horse Mackerel, Sardine and Anchovy, 14–23 September 2000, Copenhagen, Denmark. ICES CM 2001/ACFM:06Google Scholar
  35. ICES (2010) Report of the workshop on age reading of European anchovy (WKARA), 9–13 November 2009, Sicily, Italy. ICES CM 2009/ACOM:43Google Scholar
  36. ICES (2015) Report of the working group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA), 24–29 June 2015, Lisbon, Portugal. ICES CM 2015/ACOM:16Google Scholar
  37. Irigoien X, Fiksen Ø, Cotano U, Uriarte A, Alvarez P, Arrizabalaga H, Boyra G, Santos M, Sagarminaga Y, Otheguy P, Etxebeste E, Zarauza L, Artetxe I, Motos L (2007) Could Biscay Bay Anchovy recruit through a spatial loophole? Prog Oceanogr 74:132–148. doi: 10.1016/j.pocean.2007.04.011 CrossRefGoogle Scholar
  38. Irigoien X, Fernandes JA, Grosjean P, Denis K, Albaina A, Santos M (2009) Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment. J Plankton Res 31(1):1–17. doi: 10.1093/plankt/fbn096 CrossRefGoogle Scholar
  39. Jawad LA (2015) Biology and ecology of sardines and anchovies. J Fish Biol 87(4):1127–1128. doi: 10.1111/jfb.12787 CrossRefGoogle Scholar
  40. Jorde PE (2012) Allele frequency covariance among cohorts and its use in estimating effective size of age-structured populations. Mol Ecol Resour 12(3):476–480. doi: 10.1111/j.1755-0998.2011.03111.x CrossRefGoogle Scholar
  41. Jorde PE, Ryman N (1995) Temporal allele frequency change and estimation of effective size in populations with overlapping generations. Genetics 139:1077–1090Google Scholar
  42. Jorde PE, Ryman N (2007) Unbiased estimator for genetic drift and effective population size. Genetics 177:927–935. doi: 10.1534/genetics.107.075481 CrossRefGoogle Scholar
  43. Jue NK (2006) Exploring the structure of genetic variation and the influences of demography on effective population size in the gag grouper Mycteroperca microlepi (Goode and Bean). J Fish Biol 69:217–224. doi: 10.1111/j.1095-8649.2006.01273.x CrossRefGoogle Scholar
  44. Kliman R, Sheehy B, Schultz J (2008) Genetic drift and effective population size. Nat Edu 1(3):3. http://www.nature.com/scitable/topicpage/genetic-drift-and-effective-population-size-772523
  45. Laconcha U, Iriondo M, Arrizabalaga H, Manzano C, Markaide P, Montes I, Zarraonaindia I, Velado I, Bilbao E, Goñi N, Santiago J, Domingo A, Karakulak S, Oray IK, Estonba A (2015) New nuclear SNP markers unravel the genetic structure and effective population size of albacore tuna (Thunnus alalunga). PLoS One 10(6):e0128247. doi: 10.1371/journal.pone.0128247 CrossRefGoogle Scholar
  46. Laurent V, Planes S (2007) Effective population size estimation on Sardina pilchardus in the Bay of Biscay using a temporal genetic approach. Biol J Linn Soc 90:591–602CrossRefGoogle Scholar
  47. Lenfant P, Planes S (2002) Temporal genetic changes between cohorts in a natural population of a marine fige, Diplodus sargus. Biol J Linn Soc 76:9–20CrossRefGoogle Scholar
  48. Molecular Ecology Resources Primer Development Consortium, Abreu AG, Albaina A, Alpermann TJ, Apkenas VE, Bankhead-Dronnet S, Bergek S, Berumen ML, Cho CH, Clobert J, Coulon A, DE Feraudy D, Estonba A, Hankeln T, Hochkirch A, Hsu TW, Huang TJ, Irigoien X, Iriondo M, Kay KM, Kinitz T, Kothera L, LE Hénanff M, Lieutier F, Lourdais O, Macrini CM, Manzano C, Martin C, Morris VR, Nanninga G, Pardo MA, Plieske J, Pointeau S, Prestegaard T, Quack M, Richard M, Savage HM, Schwarcz KD, Shade J, Simms EL, Solferini VN, Stevens VM, Veith M, Wen MJ, Wicker F, Yost JM, Zarraonaindia I (2012) Permanent genetic resources added to molecular ecology resources database 1 October 2011–30 November 2011. Mol Ecol Resour 12:374–376Google Scholar
  49. Montes I (2014) Population genetics of the European anchovy (Engraulis encrasicolus, L.) in the Bay of Biscay. Dissertation, University of the Basque Country, BilbaoGoogle Scholar
  50. Montes I, Conklin D, Albaina A, Creer S, Carvalho GR, Santos M, Estonba A (2013) SNP Discovery in European Anchovy (Engraulis encrasicolus, L.) by high-throughput transcriptome and genome sequencing. PLoS One 8(8):e70051. doi: 10.1371/journal.pone.0070051 CrossRefGoogle Scholar
  51. Morgan MJ, Brattey J (2005) Effect of changes in reproductive potential on perceived productivity of three northwest Atlantic cod (Gadus morhua) stocks. ICES J Mar Sci 62:65–74CrossRefGoogle Scholar
  52. Payseur BA, Cutter AD (2006) Integrating patterns of polymorphism at SNPs and STRs. Trends Genet 22:424–429CrossRefGoogle Scholar
  53. Pita A (2013) Spatio-temporal genetic dynamics of European hake (Merluccius merluccius) populations from Atlantic fishing grounds. Dissertation, University of Vigo, VigoGoogle Scholar
  54. Planes S, Romans P (2004) Evidence of genetic selection for growth in new recruits of a marine fish. Mol Ecol 13:2049–2060. doi: 10.1111/j.1365-294X.2004.02202.x CrossRefGoogle Scholar
  55. Plounevez S, Champalbert G (1999) Feeding behaviour and trophic environment of Engraulis encrasicolus (L.) in the Bay of Biscay. Estuar Coast Shelf Sci 49(2):177–191. doi: 10.1006/ecss.1999.0497 CrossRefGoogle Scholar
  56. Poulsen NA, Nielsen EE, Schierup MH, Loeschcke V, Grønkjær P (2006) Long-term stability and effective population size in North Sea and Baltic Sea cod (Gadus morhua). Mol Ecol 15:321–331. doi: 10.1111/j.1365-294X.2005.02777.x CrossRefGoogle Scholar
  57. Pudovkin AI, Zaykin DV, Hedgecock D (1996) On the potential for estimating the effective number of breeders from heterozygote-excess in progeny. Genetics 144:383–387Google Scholar
  58. Reed RN (2005) An ecological risk assessment of nonnative boas and pythons as potentially invasive species in the United States. Risk Anal 25:753–766. doi: 10.1111/j.1539-6924.2005.00621.x CrossRefGoogle Scholar
  59. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  60. Ryman N, Allendorf FW, Jorde PE, Laikre L, Hössjer O (2014) Samples from subdivided populations yield biased estimates of effective size that overestimate the rate of loss of genetic variation. Mol Ecol Resour 14(1):87–99. doi: 10.1111/1755-0998.12154 CrossRefGoogle Scholar
  61. Saillant E, Gold JR (2006) Population structure and variance effective size of red snapper (Lutjanus campechanus) in the northern Gulf of Mexico*. Fish Bull 104:136–148Google Scholar
  62. Shelton AO, Mangel M (2011) Fluctuations of fish populations and the magnifying effects of fishing. Proc Natl Acad Sci USA 108(17):7075–7080. doi: 10.1073/pnas.1100334108 CrossRefGoogle Scholar
  63. Silva G, Horne JB, Castilho R (2014) Anchovies go north and west without losing diversity: post-glacial range expansions in a small pelagic fish. J Biogeogr. doi: 10.1111/jbi.12275 Google Scholar
  64. Sjödin P, Kaj I, Krone S, Lascoux M, Nordborg M (2005) On the meaning and existence of an effective population size. Genetics 169:1061–1070. doi: 10.1534/genetics.104.026799 CrossRefGoogle Scholar
  65. Somarakis S, Palomera I, Garcia A, Quintanilla L, Koutsikopoulos C, Uriarte A, Motos L (2004) Daily egg production of anchovy in European waters. ICES J Mar Sci 61(6):944–958. doi: 10.1016/j.icesjms.2004.07.018 CrossRefGoogle Scholar
  66. Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS (2010) Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci 67:1585–1595. doi: 10.1139/F10-084 CrossRefGoogle Scholar
  67. Theunert C, Tang K, Lachmann M, Hu S, Stoneking M (2012) Inferring the history of population size change from genome-wide SNP data. Mol Biol Evol 29(12):3653–3667. doi: 10.1093/molbev/mss175 CrossRefGoogle Scholar
  68. Turner TF, Wares JP, Gold JR (2002) Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus). Genetics 162:1329–1339Google Scholar
  69. Viñas J, Sanz N, Peñarrubia L, Araguas RM, García-Marín JL, Roldán MI, Pla C (2014) Genetic population structure of European anchovy in the Mediterranean Sea and the Northeast Atlantic Ocean using sequence analysis of the mitochondrial DNA control region. ICES J Mar Sci 71(2):391–397. doi: 10.1093/icesjms/fst132 CrossRefGoogle Scholar
  70. Wang JL (2001) A pseudo-likelihood method for estimating effective population size from temporally spaced samples. Genet Res 78:243–257. doi: 10.1017/S0016672301005286 CrossRefGoogle Scholar
  71. Wang J (2005) Estimation of effective population sizes from data on genetic markers. Philos Trans R Soc Lond B Biol Sci 360(1459):1395–1409. doi: 10.1098/rstb.2005.1682 CrossRefGoogle Scholar
  72. Wang JL, Whitlock MC (2003) Estimating effective population size and migration rates from genetic samples over space and time. Genetics 163:429–446Google Scholar
  73. Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391Google Scholar
  74. Waples RS (1991) Genetic methods for estimating the effective size of cetacean populations. Rep Int Whal Comm (Special Issue) 13:279–300Google Scholar
  75. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184. doi: 10.1007/s10592-005-9100-y CrossRefGoogle Scholar
  76. Waples RS, Yokota M (2007) Temporal estimates of effective population size in species with overlapping generations. Genetics 175:219–233. doi: 10.1534/genetics.106.065300 CrossRefGoogle Scholar
  77. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  78. Zarraonaindia I, Pardo MA, Iriondo M, Manzano C, Estonba A (2009) Microsatellite variability in European anchovy (Engraulis encrasicolus) calls for further investigation of its genetic structure and biogeography. ICES J Mar Sci 66:2176–2182. doi: 10.1093/icesjms/fsp187 CrossRefGoogle Scholar
  79. Zarraonaindia I, Iriondo M, Albaina A, Pardo MA, Manzano C, Grant SW, Irigoien X, Estonba A (2012) Multiple SNP markers reveal fine-scale population and deep phylogeographic structure in European anchovy (Engraulis encrasicolus, L.). PLoS ONE 7(7):e42201. doi: 10.131/journal.pone.0042201 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Iratxe Montes
    • 1
  • Mikel Iriondo
    • 1
  • Carmen Manzano
    • 1
  • Maria Santos
    • 2
  • Darrell Conklin
    • 3
    • 4
  • Gary R. Carvalho
    • 5
  • Xabier Irigoien
    • 6
  • Andone Estonba
    • 1
    Email author
  1. 1.Department of Genetics, Physical Anthropology and Animal PhysiologyUniversity of the Basque Country UPV/EHULeioaSpain
  2. 2.Marine Research DivisionAZTIPasaiaSpain
  3. 3.Department of Computer Science and Artificial IntelligenceUniversity of the Basque Country UPV/EHUSan SebastianSpain
  4. 4.IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
  5. 5.Molecular Ecology and Fisheries Genetics LaboratoryBangor UniversityBangorUK
  6. 6.Red Sea Research CenterKing Abdullah University of Science and TechnologyThuwalKingdom of Saudi Arabia

Personalised recommendations