Marine Biology

, 163:59 | Cite as

Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina

  • M. Carmen PinedaEmail author
  • Xavier Turon
  • Rocío Pérez-Portela
  • Susanna López-Legentil
Invasive Species - Original paper
Part of the following topical collections:
  1. Invasive Species


The analysis of temporal genetic variability is an essential yet largely neglected tool to unveil and predict the dynamics of introduced species. We here describe the temporal genetic structure and diversity over time of an introduced population of the ascidian Styela plicata (Lesueur, 1823) in Wilmington (North Carolina, USA, 34°08′24″N, 77°51′44″W). This population suffers important salinity and temperature changes, and in June every year we observed massive die-offs, leaving free substratum that was recolonized within a month. We sampled 12–14 individuals of S. plicata every 2 months from 2007 to 2009 (N = 196) and analyzed a mitochondrial marker (the gene cytochrome oxidase subunit I, COI) and seven nuclear microsatellites. Population genetic analyses showed similar results for both types of markers and revealed that most of the genetic variation was found within time periods. However, analyses conducted with microsatellite loci also showed weak but significant differences among time periods. Specifically, in the samplings after die-off episodes (August–November 2007 and 2008) the genetic diversity increased, the inbreeding coefficient showed prominent drops, and there was a net gain of alleles in the microsatellite loci. Taken together, our results suggest that recruits arriving from neighboring populations quickly occupied the newly available space, bringing new alleles with them. However, other shifts in genetic diversity and allele loss and gain episodes were observed in December–January and February–March 2008, respectively, and were apparently independent of die-off events. Overall, our results indicate that the investigated population is stable over time and relies on a periodic arrival of larvae from other populations, maintaining high genetic diversity and a complex interplay of allele gains and losses.


Microsatellite Locus Allelic Richness Massive Mortality Event Moderate Genetic Diversity Botryllus Schlosseri 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Special thanks are to C. Valero-Jimenez, who designed and optimized the microsatellite primers and collaborated with the genotyping of some samples. This research was supported by a grant from the United States–Israel Binational Science Foundation (BSF), Jerusalem, Israel (number 2014025), the Spanish Government project CTM2013—48163—and the Catalan Government Grant 2014SGR-336 for Consolidated Research Groups.

Compliance with ethical standards

The present study does not raise any ethical issues. While this study involves research on animals, ascidians are not under the regulation of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Moreover, the number of collected animals was as low as possible and the manipulation was fast and painless.

Supplementary material

227_2016_2829_MOESM1_ESM.docx (2.9 mb)
Supplementary material 1 (DOCX 2932 kb)


  1. Airoldi L, Turon X, Perkol-Finkel S, Rius M (2015) Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers Distrib. doi: 10.1111/ddi.12301 Google Scholar
  2. Altman S, Whitlatch RB (2007) Effects of small-scale disturbance on invasion success in marine communities. J Exp Mar Bio Ecol 342:15–29. doi: 10.1016/j.jembe.2006.10.011 CrossRefGoogle Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  4. Barros RC, da Rocha RM, Pie MR (2009) Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea). Aquat Invasions 4:45–57. doi: 10.3391/ai.2009.4.1.4 CrossRefGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  6. Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339. doi: 10.1016/j.tree.2011.03.023 CrossRefGoogle Scholar
  7. Bock DG, MacIsaac HJ, Cristescu ME (2012) Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. P Roy Soc B Biol Sci 279:2377–2385. doi: 10.1098/rspb.2011.2610 CrossRefGoogle Scholar
  8. Brunetti R, Menin F (1977) Ascidians of the Laguna Veneta II, Distribution and ecological observations. Boll Zool 44:337–352CrossRefGoogle Scholar
  9. Bunje PME, Barluenga M, Meyer A (2007) Sampling genetic diversity in the sympatrically and allopatrically speciating Midas cichlid species complex over a 16 year time series. BMC Evol Biol 7:25. doi: 10.1186/1471-2148-7-25 CrossRefGoogle Scholar
  10. Calderón I, Ortega N, Duran S, Becerro MA, Pascual M, Turon X (2007) Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Mol Ecol 16:1799–1810. doi: 10.1111/j.1365-294X.2007.03276.x CrossRefGoogle Scholar
  11. Calderón I, Palacín C, Turon X (2009) Microsatellite markers reveal shallow genetic differentiation between cohorts of the common sea urchin Paracentrotus lividus (Lamarck) in northwest Mediterranen. Mol Ecol 18:3036–3049. doi: 10.1111/j.1365-294X.2009.04239.x CrossRefGoogle Scholar
  12. Carlton J (1996) Marine bioinvasions: the alteration of marine ecosystems by nonindigenous species. Oceanography 9:36–43. doi: 10.5670/oceanog.1996.25 CrossRefGoogle Scholar
  13. Colautti RI, MacIsaac HJ (2004) A neutral terminology to define “invasive” species. Divers Distrib 10:135–141. doi: 10.1111/j.1366-9516.2004.00061.x CrossRefGoogle Scholar
  14. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Google Scholar
  15. Crooks JA, Chang AL, Ruiz GM (2011) Aquatic pollution increases the relative success of invasive species. Biol Invasions 13:165–176. doi: 10.1007/s10530-010-9799-3 CrossRefGoogle Scholar
  16. deRivera CE, Hitchcock NG, Teck SJ, Steves BP, Hines AH, Ruiz GM (2007) Larval development rate predicts range expansion of an introduced crab. Mar Biol 150:1275–1288. doi: 10.1007/s00227-006-0451-9 CrossRefGoogle Scholar
  17. Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449. doi: 10.1111/j.1365-294X.2007.03538.x CrossRefGoogle Scholar
  18. Dupont L, Viard F, David P, Bishop JDD (2007) Combined effects of bottlenecks and selfing in populations of Corella eumyota, a recently introduced sea squirt in the English Channel. Divers Distrib 13:808–817. doi: 10.1111/j.1472-4642.2007.00405.x CrossRefGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefGoogle Scholar
  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  21. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299Google Scholar
  22. Forrest BM, Gardner JPA, Taylor MD (2009) Internal borders for managing invasive marine species. J Appl Ecol 46:46–54. doi: 10.1111/j.1365-2664.2008.01544.x CrossRefGoogle Scholar
  23. Galil B (2000) A sea under siege–alien species in the Mediterranean. Biol Invasions 2:177–186. doi: 10.1023/A:1010057010476 CrossRefGoogle Scholar
  24. Galletly B, Blows M, Marshall D (2007) Genetic mechanisms of pollution resistance in a marine invertebrate. Ecol Appl 17:2290–2297. doi: 10.1890/06-2079.1 CrossRefGoogle Scholar
  25. Geller JB, Darling JA, Carlton JT (2010) Genetic perspectives on marine biological invasions. Ann Rev Mar Sci 2:367–393. doi: 10.1146/annurev.marine.010908.163745 CrossRefGoogle Scholar
  26. Gerlach G, Jueterbock A, Kraemer P, Deppermann J, Harmand P (2010) Calculations of population differentiation based on GST and D: forget GST but not all of statistics! Mol Ecol 19:3845–3852. doi: 10.1111/j.1365-294X.2010.04784.x CrossRefGoogle Scholar
  27. Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178. doi: 10.1111/j.1365-294X.2007.03413.x CrossRefGoogle Scholar
  28. Goldstien SJ, Inglis GJ, Schiel DR, Gemmell NJ (2013) Using temporal sampling to improve attribution of source populations for invasive species. PLoS One 8:e65656. doi: 10.1371/journal.pone.0065656 CrossRefGoogle Scholar
  29. Gomaa NH, Montesinos-Navarro A, Alonso-Blanco C, Picó FX (2011) Temporal variation in genetic diversity and effective population size of Mediterranean and subalpine Arabidopsis thaliana populations. Mol Ecol 20:3540–3554. doi: 10.1111/j.1365-294X.2011.05193.x Google Scholar
  30. Grosberg R (1987) Limited dispersal and proximity-dependent mating success in the colonial ascidian Botryllus schlosseri. Evolution 41:372–384. doi: 10.2307/2409145 CrossRefGoogle Scholar
  31. Grosberg R, Cunningham CW (2001) Genetic structure in the sea. From populations to communities. In: Bertness MD, Gaines SDHM (eds) Marine community ecology. Sinauer Associates Inc, Sunderland, p 24Google Scholar
  32. Grosholz E (2002) Ecological and evolutionary consequences of coastal invasions. Trends Ecol Evol 17:22–27. doi: 10.1016/S0169-5347(01)02358-8 CrossRefGoogle Scholar
  33. Habel JC, Husemann M, Finger A, Danley PD, Frank E (2013) The relevance of time series in molecular ecology and conservation biology. Biol Rev 89:484–492. doi: 10.1111/brv.12068 CrossRefGoogle Scholar
  34. Hedgecock D (1994) Population genetics of marine organisms. US Globec News 6:1–16. doi: 10.1006/rwos.2001.0298 Google Scholar
  35. Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion: implications for conservation. Conserv Biol 6:324–337. doi: 10.1046/j.1523-1739.1992.06030324.x CrossRefGoogle Scholar
  36. Holland B (2000) Genetics of marine bioinvasions. Hydrobiologia 420:63–71. doi: 10.1007/978-94-017-2184-4_7 CrossRefGoogle Scholar
  37. Holland BS (2001) Invasion without a bottleneck : microsatellite variation in natural and invasive populations of the brown mussel Perna perna (L). Mar Biotechnol. doi: 10.1007/s1012601-0060-Z Google Scholar
  38. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x CrossRefGoogle Scholar
  39. Jiang D, Smith WC (2005) Self- and cross-fertilization in the solitary ascidian Ciona savignyi. Biol Bull-US 209:107–112. doi: 10.2307/3593128 CrossRefGoogle Scholar
  40. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405. doi: 10.1093/bioinformatics/btn129 CrossRefGoogle Scholar
  41. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94. doi: 10.1186/1471-2156-11-94 CrossRefGoogle Scholar
  42. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi: 10.1111/j.1365-294X.2008.03887.x CrossRefGoogle Scholar
  43. Jost L (2009) D vs Gst: response to Heller and Siegismund (2009) and Ryman and Leimar (2009). Mol Ecol 18:20889–22091. doi: 10.1111/j.1365-294X.2009.04186.x CrossRefGoogle Scholar
  44. Kalinowski ST (2005) Do polymorphic loci require large sample sizes to estimate genetic distances? Heredity 94:33–36. doi: 10.1038/sj.hdy.6800548 CrossRefGoogle Scholar
  45. Kano S, Chiba S, Satoh N (2001) Genetic relatedness and variability in inbred and wild populations of the solitary ascidian Ciona intestinalis revealed by arbitrarily primed polymerase chain reaction. Mar Biotechnol 3:58–67. doi: 10.1007/s101260000048 CrossRefGoogle Scholar
  46. Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866. doi: 10.1111/j.1461-0248.2008.01188.x CrossRefGoogle Scholar
  47. Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204. doi: 10.1016/S0169-5347(01)02101-2 CrossRefGoogle Scholar
  48. Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Bio Ecol 342:3–4. doi: 10.1016/j.jembe.2006.10.009 CrossRefGoogle Scholar
  49. Lee HJ, Boulding EG (2009) Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol Ecol 18:2165–2184. doi: 10.1111/j.1365-294X.2009.04169.x CrossRefGoogle Scholar
  50. Lee CE, Gelembiuk GW (2008) Evolutionary origins of invasive populations. Evol Appl 1:427–448. doi: 10.1111/j.1752-4571.2008.00039.x CrossRefGoogle Scholar
  51. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  52. Locke A, Hanson JM (2011) Trends in invasive ascidian research: a view from the 3rd International Invasive Sea Squirt Conference. Aquat Invasions 6:367–370. doi: 10.3391/ai.2011.6.4.01 CrossRefGoogle Scholar
  53. Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi: 10.1016/j.tree.2005.02.004 CrossRefGoogle Scholar
  54. Mallin MA, Esham EC, Williams KE, Nearhoof JE (1999) Tidal stage variability of fecal coliform and chlorophyll a concentrations in coastal creeks. Mar Pollut Bull 38:414–422. doi: 10.1016/S0025-326X(99)00024-7 CrossRefGoogle Scholar
  55. Mallin MA, Burkholder JM, Cahoon LB, Posey MH (2000) North and South Carolina coasts. Mar Pollut Bull 41:56–75. doi: 10.1016/S0025-326X(00)00102-8 CrossRefGoogle Scholar
  56. Manríquez P, Castilla J (2005) Self-fertilization as an alternative mode of reproduction in the solitary tunicate Pyura chilensis. Mar Ecol Prog Ser 305:113–125. doi: 10.3354/meps305113 CrossRefGoogle Scholar
  57. Marchetti M, Moyle P, Levine R (2004) Alien fishes in California watersheds: characteristics of successful and failed invaders. Ecol Appl 14:587–596. doi: 10.1890/02-5301 CrossRefGoogle Scholar
  58. Marin MG, Bressan M, Beghi L, Brunetti R (1987) Thermo-haline tolerance of Ciona intestinalis at different developmental stages. Cah Biol Mar 28:47–57Google Scholar
  59. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557. doi: 10.1016/S0169-5347(02)02633-2 CrossRefGoogle Scholar
  60. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. doi: 10.1007/s10592-005-9056-y CrossRefGoogle Scholar
  61. Paz G, Douek J, Mo C, Goren M, Rinkevich B (2003) Genetic structure of Botryllus schlosseri (Tunicata) populations from the Mediterranean coast of Israel. Mar Ecol Prog Ser 250:153–162. doi: 10.3354/meps250153 CrossRefGoogle Scholar
  62. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539. doi: 10.1093/bioinformatics/bts460 CrossRefGoogle Scholar
  63. Pérez-Portela R, Bishop JDD, Davis AR, Turon X (2009) Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiacea) inferred from mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 50:560–570. doi: 10.1016/j.ympev.2008.11.014 CrossRefGoogle Scholar
  64. Pérez-Portela R, Turon X, Bishop JDD (2012) Bottlenecks and loss of genetic diversity: spatio-temporal patterns of genetic structure in an ascidian recently introduced in Europe. Mar Ecol Prog Ser 451:93–105. doi: 10.3354/meps09560 CrossRefGoogle Scholar
  65. Pineda MC, López-Legentil S, Turon X (2011) The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6:e25495. doi: 10.1371/journal.pone.0025495 CrossRefGoogle Scholar
  66. Pineda MC, McQuaid CD, Turon X, López-Legentil S, Ordóñez V, Rius M (2012a) Tough adults, frail babies: an analysis of stress sensitivity across early life-history stages of widely introduced marine invertebrates. PLoS One 7:e46672. doi: 10.1371/journal.pone.0046672 CrossRefGoogle Scholar
  67. Pineda MC, Turon X, López-Legentil S (2012b) Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 17:435–444. doi: 10.1007/s12192-012-0321-y CrossRefGoogle Scholar
  68. Pineda MC, López-Legentil S, Turon X (2013) Year-round reproduction in a seasonal sea: biological cycle of the introduced ascidian Styela plicata in the Western Mediterranean. Mar Biol 160:221–230. doi: 10.1007/s00227-012-2082-7 CrossRefGoogle Scholar
  69. Reem E, Douek J, Katzir G, Rinkevich B (2013) Long-term population genetic structure of an invasive urochordate: the ascidian Botryllus schlosseri. Biol Invasions 15:225–241. doi: 10.1007/s10530-012-0281-2 CrossRefGoogle Scholar
  70. Reusch TBH, Wood TE (2007) Molecular ecology of global change. Mol Ecol 16:3973–3992. doi: 10.1111/j.1365-294X.2007.03454.x CrossRefGoogle Scholar
  71. Rius M, Darling J (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242. doi: 10.1016/j.tree.2014.02.003 CrossRefGoogle Scholar
  72. Rius M, Turon X, Ordóñez V, Pascual M (2012) Tracking invasion histories in the sea: facing complex scenarios using multilocus data. PLoS One 7(4):e35815. doi: 10.1371/journal.pone.0035815 CrossRefGoogle Scholar
  73. Rius M, Turon X, Bernardi G, Volckaert FAM, Viard F (2015) Marine invasion genetics: from spatio-temporal patterns to evolutionary outcomes. Biol Inv 17:869–885. doi: 10.1007/s10530-014-0792-0 CrossRefGoogle Scholar
  74. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi: 10.1016/j.tree.2007.07.002 CrossRefGoogle Scholar
  75. Ruiz G, Carlton J, Grosholz E, Hines AH (1997) Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. Am Zool 37:621–632. doi: 10.1093/icb/37.6.621 CrossRefGoogle Scholar
  76. Sakai A, Allendorf F, Holt J (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332. doi: 10.1146/annurev.ecolsys.32.081501.114037 CrossRefGoogle Scholar
  77. Schneider SM, Guverich J (2001) Design and analysis of ecological experiments. Oxford University Press, New YorkGoogle Scholar
  78. Selkoe K, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. doi: 10.1111/j.1461-0248.2006.00889.x CrossRefGoogle Scholar
  79. Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, Bennison C, Ball AD, Beckerman AP, Slate J (2010) Adaptation genomics: the next generation. Trends Ecol Evol 25:705–712. doi: 10.1111/j.1461-0248.2006.00889.x CrossRefGoogle Scholar
  80. Strayer DL, Eviner VT, Jeschke JM, Pace ML (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:645–651. doi: 10.1016/j.tree.2006.07.007 CrossRefGoogle Scholar
  81. Suarez AV, Tsutsui ND (2008) The evolutionary consequences of biological invasions. Mol Ecol 17:351–360. doi: 10.1111/j.1365-294X.2007.03456.x CrossRefGoogle Scholar
  82. Sutherland JP (1974) Multiple stable points in natural communities. Am Nat 108:859–873. doi: 10.1086/282961 CrossRefGoogle Scholar
  83. Svane I, Young C (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90Google Scholar
  84. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molec Biol Evol 28:2731–2739. doi: 10.1093/molbev/msr121 CrossRefGoogle Scholar
  85. Torkkola J, Riginos C, Liggins L (2013) Regional patterns of mtDNA diversity in Styela plicata, an invasive ascidian, from Australian and New Zealand marinas. Mar Freshw Res 64:139–145. doi: 10.1071/MF12289 CrossRefGoogle Scholar
  86. Valero-Jiménez CA, Pérez-Portela R, López-Legentil S (2012) Characterization of novel microsatellite markers from the worldwide invasive ascidian Styela plicata. Conserv Genet Resour 4:559–561. doi: 10.1007/s12686-011-9591-4 CrossRefGoogle Scholar
  87. Vaselli S, Bulleri F, Benedetti-Cecchi L (2008) Hard coastal-defence structures as habitats for native and exotic rocky-bottom species. Mar Env Res 66:395–403. doi: 10.1016/j.marenvres.2008.06.002 CrossRefGoogle Scholar
  88. Verity R, Nichols RA (2014) What is genetic differentiation, and how should we measure it—GST, D, neither or both? Mol Ecol 23:4216–4225. doi: 10.1111/mec.12856 CrossRefGoogle Scholar
  89. Waples RS (1989) Temporal variation in allele frequencies: testing the right hypothesis. Evolution 43:1236–1251. doi: 10.2307/2409359 CrossRefGoogle Scholar
  90. Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666. doi: 10.2307/2265769 CrossRefGoogle Scholar
  91. Yamaguchi M (1975) Growth and reproductive cycles of the marine fouling ascidians Ciona intestinalis, Styela plicata, Botrylloides violaceus, and Leptoclinum mitsukurii at Aburatsubo-Moroiso Inlet (central Japan). Mar Biol 29:253–259. doi: 10.1007/BF00391851 CrossRefGoogle Scholar
  92. Zenetos A, Gofas S, Verlaque M, Cinar ME, Garci JE, Bianchi CN, Morri C, Azzurro E, Bilecenoglu M, Froglia C, Siokou I, Violanti D, Sfriso A, Giangrande A, Mastrototaro F, An TK, Ballesteros E, Zingone A, Gambi MC, Streftaris N (2010) Alien species in the Mediterranean Sea by 2010. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part I. Spatial distribution. Mediterr Mar Sci 11:381–493Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • M. Carmen Pineda
    • 1
    • 2
    Email author
  • Xavier Turon
    • 3
  • Rocío Pérez-Portela
    • 3
    • 4
  • Susanna López-Legentil
    • 5
  1. 1.Department of Animal Biology (Invertebrates)University of BarcelonaBarcelonaSpain
  2. 2.Australian Institute of Marine Sciences, PMB3Townsville Mail CentreQueenslandAustralia
  3. 3.Center for Advanced Studies of Blanes (CEAB-CSIC)Blanes, GironaSpain
  4. 4.Rosenstiel School of Marine and Atmospheric Science (RSMAS)University of MiamiMiamiUSA
  5. 5.Department of Biology and Marine Biology, and Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonUSA

Personalised recommendations