Marine Biology

, 163:29 | Cite as

In situ biomonitoring shows seasonal patterns and environmentally mediated gaping activity in the bivalve, Pinna nobilis

  • Jose R. Garcia-March
  • Santiago Jiménez
  • Miguel A. Sanchis
  • Sergio Monleon
  • Jonathan Lees
  • Donna Surge
  • Jose Tena-Medialdea
Original paper


The rhythms and responses of animals to environmental factors are important issues for their adaptation to natural cycles. These rhythms assure an optimum synchrony between organisms and their environment. Bio-logging enables monitoring these activity cycles remotely. To characterize rhythms and responses of fan mussels (Pinna nobilis) to environmental factors, six individuals were monitored from April 2009 to October 2011. The study was conducted at a station in the western Mediterranean at 11 m depth in Tabarca Island Marine Reserve (Alicante, Spain). Sensors at the station monitored dissolved oxygen (mg l−1), turbidity (ntu), temperature (°C), chlorophyll a concentration (chl a) (mg m−3), current speed (cm s−1), and direction (°). One pattern of gaping activity (P1) occurred from mid-July–early August–early November, whereas another pattern (P2) occurred the rest of the time (i.e., from early November–mid-July–early August). The activity was synchronized among the fan mussels and showed autocorrelation peaks at a period of 21.9–24 h. In P1, the fan mussels opened their valves according to the position and illumination of the sun and moon. In P2, however, individuals did not track sun and moonlight, although their gaping activity was regular and synchronized. Likewise, individuals were unaffected by high-frequency (daily) variation in dissolved oxygen and (chl a). Gaping activity was directly influenced by current intensity and direction. The shift between the two patterns and the presence of similar periods of autocorrelation in the activity time series indicate that P. nobilis has an internal clock.


Bivalve Current Velocity Full Moon Marine Reserve Valve Closure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project was funded by “Obra Social Caja Madrid” of “Caja Madrid” Bank. We are grateful to Felio Lozano, the coordinator of Tabarca Island Marine Reserve, the guards of the Reserve, Silvia Revenga and the RMIP—SGM—MARM, for their permissions, collaboration, and inestimable help with the work in the MPA. We are also grateful to the anonymous reviewers and the editors for their comments that have strongly improved the final version of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

227_2016_2812_MOESM1_ESM.pdf (512 kb)
Supplementary material 1 (PDF 512 kb)
227_2016_2812_MOESM2_ESM.pdf (171 kb)
Supplementary material 2 (PDF 170 kb)
227_2016_2812_MOESM3_ESM.pdf (892 kb)
Supplementary material 3 (PDF 892 kb)
227_2016_2812_MOESM4_ESM.pdf (1.3 mb)
Supplementary material 4 (PDF 1338 kb)
227_2016_2812_MOESM5_ESM.pdf (1.1 mb)
Supplementary material 5 (PDF 1159 kb)
227_2016_2812_MOESM6_ESM.pdf (1.5 mb)
Supplementary material 6 (PDF 1552 kb)
227_2016_2812_MOESM7_ESM.pdf (2.9 mb)
Supplementary material 7 (PDF 2992 kb)
227_2016_2812_MOESM8_ESM.pdf (589 kb)
Supplementary material 8 (PDF 588 kb)
227_2016_2812_MOESM9_ESM.pdf (556 kb)
Supplementary material 9 (PDF 556 kb)
227_2016_2812_MOESM10_ESM.pdf (177 kb)
Supplementary material 10 (PDF 176 kb)
227_2016_2812_MOESM11_ESM.pdf (175 kb)
Supplementary material 11 (PDF 174 kb)
227_2016_2812_MOESM12_ESM.pdf (694 kb)
Supplementary material 12 (PDF 694 kb)
227_2016_2812_MOESM13_ESM.pdf (635 kb)
Supplementary material 13 (PDF 634 kb)
227_2016_2812_MOESM14_ESM.pdf (182 kb)
Supplementary material 14 (PDF 182 kb)
227_2016_2812_MOESM15_ESM.pdf (124 kb)
Supplementary material 15 (PDF 124 kb)
227_2016_2812_MOESM16_ESM.pdf (146 kb)
Supplementary material 16 (PDF 145 kb)
227_2016_2812_MOESM17_ESM.pdf (514 kb)
Supplementary material 17 (PDF 513 kb)


  1. Bae MJ, Park YS (2014) Biological early warning system based on the responses of aquatic organisms to disturbances: a review. Sci Total Environ 466:635–649. doi: 10.1016/j.scitotenv.2013.07.075 CrossRefGoogle Scholar
  2. Basso L, Vázquez-Luis M, García-March JR, Deudero S, Alvarez E, Vicente N, Duarte CM, Hendriks IE (2015) The Pen Shell, Pinna nobilis: a review of population status and recommended research priorities in the Mediterranean Sea. In: Curry B (ed) Advances in marine biology, vol 71. Academic Press, London, pp 109–160. doi: 10.1016/bs.amb.2015.06.002 Google Scholar
  3. Borcherding J (2006) Ten years of practical experience with the Dreissena-Monitor, a biological early warning system for continuous water quality monitoring. Hydrobiologia 556:417–426. doi: 10.1007/s10750-005-1203-4 CrossRefGoogle Scholar
  4. Cabanellas-Reboredo M, Deudero S, Alos J, Valencia JM, March D, Hendriks IE, Alvarez E (2009) Recruitment of Pinna nobilis (Mollusca: Bivalvia) on artificial structures. Mar Biodivers Rec 2:1–5. doi: 10.1017/S1755267209001274 CrossRefGoogle Scholar
  5. Cabanellas-Reboredo M, Blanco A, Deudero S, Tejada S (2010) Effects of the invasive macroalga Lophocladia lallemandii on the diet and trophism of Pinna nobilis (Mollusca: Bivalvia) and its guests Pontonia pinnophylax and Nepinnotheres pinnotheres (Crustacea: Decapoda). Sci Mar 74:101–110. doi: 10.3989/scimar.2010.74n1101 CrossRefGoogle Scholar
  6. Davenport J, Ezgeta-Balic D, Peharda M, Skejic S, Nincevia-Gladan Z, Matijevic S (2011) Size-differential feeding in Pinna nobilis L, (Mollusca: Bivalvia): exploitation of detritus, phytoplankton and zooplankton. Estuar Coast Shelf Sci 92:246–254. doi: 10.1016/j.ecss.2010.12.033 CrossRefGoogle Scholar
  7. de Gaulejac B (1995) Mise en évidence de l’hermafroditisme successif à maturation asynchrone de Pinna nobilis (L.) (Bivalvia: Pteroidea). C R Acad Sci III Sci Vie 318:99–103Google Scholar
  8. Duffet-Smith P (1988) Practical astronomy with your calculator. Cambridge University Press, CambridgeGoogle Scholar
  9. Foster RG, Kreitzman L (2004) Rhythms of life. The biological clocks that control the daily lives of every living thing. Yale University Press, New HavenGoogle Scholar
  10. García-March JR, Ferrer JF (1995) Biometría de Pinna nobilis L, 1758: una revisión de la ecuación de De Gaulejac y Vicente (1990). Bol Inst Esp Oceanogr 11:175–181Google Scholar
  11. Garcia-March JR, Vicente N (2007) Protocol to study and monitor Pinna nobilis populations within marine protected areas. MEPA, La ValetteGoogle Scholar
  12. García-March JR, Garcia-Carrascosa AM, Pena AL (2002) In situ measurement of Pinna nobilis shells for age and growth studies: a new device. Mar Ecol PSZN I 23(3):207–217. doi: 10.1046/j.1439-0485.2002.02781.x CrossRefGoogle Scholar
  13. García-March JR, Perez-Rojas L, García-Carrascosa AM (2007) Influence of hydrodynamic forces on population structure of Pinna nobilis L, 1758 (Mollusca : Bivalvia): The critical combination of drag force, water depth, shell size and orientation. J Exp Mar Biol Ecol 342:202–212. doi: 10.1016/j.jembe.2006.09.007 CrossRefGoogle Scholar
  14. García-March JR, Sanchis-Solsona MA, García-Carrascosa AM (2008) Shell gaping behaviour of Pinna nobilis L, 1758: circadian and circalunar rhythms revealed by in situ monitoring. Mar Biol 153:689–698. doi: 10.1007/s00227-007-0842-6 CrossRefGoogle Scholar
  15. García-March JR, Surge D, Lees JM, Kersting DK (2011) Ecological information and water mass properties in the Mediterranean recorded by stable isotope ratios in Pinna nobilis shells. J Geophys Res Biogeosci 116:1–14. doi: 10.1029/2010JG001461 CrossRefGoogle Scholar
  16. Hendriks IE, Cabanellas-Reboredo M, Bouma TJ, Deudero S, Duarte CM (2011) Seagrass meadows modify drag forces on the shell of the fan mussel Pinna nobilis. Estuar Coasts 34:60–67. doi: 10.1007/s12237-010-9309-y CrossRefGoogle Scholar
  17. Jou LJ, Lin SC, Chen BC, Chen WY, Liao CM (2013) Synthesis and measurement of valve activities by an improved online clam-based behavioral monitoring system. Comput Electron Agric 90:106–118. doi: 10.1016/j.compag.2012.09.008 CrossRefGoogle Scholar
  18. Katsanevakis S (2007) Growth and mortality rates of the fan mussel Pinna nobilis in Lake Vouliagmeni (Korinthiakos Gulf, Greece): a generalized additive modelling approach. Mar Biol 152:1319–1331. doi: 10.1007/s00227-007-0781-2 CrossRefGoogle Scholar
  19. Kennedy H, Richardson CA, Duarte CM, Kennedy DP (2001) Oxygen and carbon stable isotopic profiles of the fan mussel, Pinna nobilis, and reconstruction of sea surface temperatures in the Mediterranean. Mar Biol 139:1115–1124CrossRefGoogle Scholar
  20. Kim WS, Huh HT, Je JG, Han KN (2003) Evidence of two-clock control of endogenous rhythm in the Washington clam, Saxidomus purpuratus. Mar Biol 142:305–309. doi: 10.1007/s00227-002-0952-0 Google Scholar
  21. Liao CM, Jau SF, Lin CM, Jou LJ, Liu CW, Liao VHC, Chang FJ (2009) Valve movement response of the freshwater clam Corbicula fluminea following exposure to waterborne arsenic. Ecotoxicology 18:567–576. doi: 10.1007/s10646-009-0314-5 CrossRefGoogle Scholar
  22. Mat AM, Massabuau JC, Ciret P, Tran D (2012) Evidence for a plastic dual circadian rhythm in the oyster Crassostrea gigas. Chronobiol Int 29:857–867. doi: 10.3109/07420528.2012.699126 CrossRefGoogle Scholar
  23. McClintock JB, Watts SA (1990) The effects of photoperiod on gametogenesis in the tropical sea-urchin Eucidaris tribuloides (Lamarck) (Echinodermata, Echinoidea). J Exp Mar Biol Ecol 139:175–184. doi: 10.1016/0022-0981(90)90145-3 CrossRefGoogle Scholar
  24. Najdek M, Blazina M, Ezgeta-Balic D, Peharda M (2013) Diets of fan shells (Pinna nobilis) of different sizes: fatty acid profiling of digestive gland and adductor muscle. Mar Biol 160:921–930. doi: 10.1007/s00227-012-2144-x CrossRefGoogle Scholar
  25. Ortmann C, Grieshaber MK (2003) Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. J Exp Biol 206:4167–4178. doi: 10.1242/jeb.00656 CrossRefGoogle Scholar
  26. Palmer JD (2000) The clocks controlling the tide-associated rhythms of intertidal animals. Bioessays 22:32–37CrossRefGoogle Scholar
  27. Rensing L, Meyer-Grahle U, Ruoff P (2001) Biological timing and the clock metaphor: oscillatory and hourglass mechanisms. Chronobiol Int 18:329–369. doi: 10.1081/cbi-100103961 CrossRefGoogle Scholar
  28. Rhoads DC, Lutz RA (1980) Skeletal growth of aquatic organisms. Plenum Publishing Corporation, New YorkCrossRefGoogle Scholar
  29. Riisgard HU, Kittner C, Seerup DF (2003) Regulation of opening state and filtration rate in filter-feeding bivalves (Cardium edule, Mytilus edulis, Mya arenaria) in response to low algal concentration. J Exp Mar Biol Ecol 284:105–127. doi: 10.1016/S0022-0981(02)00496-3 CrossRefGoogle Scholar
  30. Robson AA, De Leaniz CG, Wilson RP, Halsey LG (2010) Behavioural adaptations of mussels to varying levels of food availability and predation risk. J Moll Stud 76:348–353. doi: 10.1093/mollus/eyq025 CrossRefGoogle Scholar
  31. Rodland DL, Schöne BR, Baier S, Zhang ZJ, Dreyer W, Page NA (2009) Changes in gape frequency, siphon activity and thermal response in the freshwater bivalves Anodonta cygnea and Margaritifera falcata. J Moll Stud 75:51–57. doi: 10.1093/mollus/eyn038 CrossRefGoogle Scholar
  32. Scargle JD (1982) Studies in astronomical time-series analysis. II. Statistical aspects of spectral-analysis of unevenly spaced data. Astrophys J 263:835–853. doi: 10.1086/160554 CrossRefGoogle Scholar
  33. Schöne BR (2008) The curse of physiology—challenges and opportunities in the interpretation of geochemical data from mollusk shells. Geo-Mar Lett 28:269–285. doi: 10.1007/s00367-008-0114-6 CrossRefGoogle Scholar
  34. Schöne BR, Surge D (2012) Chapter 14. Bivalve sclerochronology and geochemistry. In: Seldon P, Hardesty J (eds) Treatise online 46: Part N, revised, vol 1. The University of Kansas, Paleontological Institute, Lawrence, pp 1–24Google Scholar
  35. Schwartzmann C, Durrieu G, Sow M, Ciret P, Lazareth CE, Massabuaua J (2011) In situ giant clam growth rate behavior in relation to temperature: a one-year coupled study of high-frequency noninvasive valvometry and sclerochronology. Limnol Oceanogr 56:1940–1951. doi: 10.4319/lo.2011.56.5.1940 CrossRefGoogle Scholar
  36. Sluyts H, VanHoof F, Cornet A, Paulussen J (1996) A dynamic new alarm system for use in biological early warning systems. Environ Toxicol Chem 15:1317–1323CrossRefGoogle Scholar
  37. Sobrino-Figueroa A, Caceres-Martinez C (2009) Alterations of valve closing behavior in juvenile Catarina scallops (Argopecten ventricosus Sowerby, 1842) exposed to toxic metals. Ecotoxicology 18:983–987. doi: 10.1007/s10646-009-0358-6 CrossRefGoogle Scholar
  38. Sow M, Durrieu G, Briollais L, Ciret P, Massabuau JC (2011) Water quality assessment by means of HFNI valvometry and high-frequency data modeling. Environ Monit Assess 182:155–170. doi: 10.1007/s10661-010-1866-9 CrossRefGoogle Scholar
  39. Suzuki K, Kiyomoto S, Koshiishi Y (2007) Observation on behavior of the large suspension feeding bivalve Atrina pectinata lisckeana under natural conditions. Bull Fish Res Agency 19:17–25Google Scholar
  40. Tran D, Fournier E, Durrieu G, Massabuau JC (2007) Inorganic mercury detection by valve closure response in the freshwater clam Corbicula fluminea: Integration of time and water metal concentration changes. Environ Toxicol Chem 26:1545–1551. doi: 10.1897/06-390R1.1 CrossRefGoogle Scholar
  41. Tran D, Nadau A, Durrieu G, Ciret P, Parisot JP, Massabuau JC (2011) Field chronobiology of a molluscan bivalve: how the moon and sun cycles interact to drive oyster activity rhythms. Chronobiol Int 28:307–317. doi: 10.3109/07420528.2011.565897 CrossRefGoogle Scholar
  42. Trigos S, García-March JR, Vicente N, Tena J, Torres J (2014) Utilization of muddy detritus as organic matter source by the fan mussel Pinna nobilis. Med Mar Sci 15:667–674. doi: 10.12681/mms.836 Google Scholar
  43. van Keulen M, Borowitzka MA (2002) Comparison of water velocity profiles through morphologically dissimilar seagrasses measured with a simple and inexpensive current meter. Bull Mar Sci 71:1257–1267Google Scholar
  44. Williams BG, Pilditch CA (1997) The entrainment of persistent tidal rhythmicity in a filter-feeding bivalve using cycles of food availability. J Biol Rhythm 12:173–181. doi: 10.1177/074873049701200208 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jose R. Garcia-March
    • 1
  • Santiago Jiménez
    • 2
  • Miguel A. Sanchis
    • 1
  • Sergio Monleon
    • 1
  • Jonathan Lees
    • 3
  • Donna Surge
    • 3
  • Jose Tena-Medialdea
    • 1
  1. 1.Institute of Environment and Marine Science Research (IMEDMAR)Universidad Católica de Valencia SVMCalpeSpain
  2. 2.Instituto de Ecología LitoralEl CampelloSpain
  3. 3.Department of Geological SciencesUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations