Marine Biology

, 163:22 | Cite as

Evidence of seabird guano enrichment on a coral reef in Oahu, Hawaii

  • Susanna E. HonigEmail author
  • Brenna Mahoney
Original paper


Seabirds and coral reefs are two of the most threatened marine communities on earth, and they co-occur on many tropical islands and subtropical islands and atolls. Seabirds concentrate marine-derived nutrients on breeding islands in the form of feces (guano), and these nutrients dramatically alter terrestrial ecosystem ecology. Recent work in the remote Pacific indicates seabird-derived nutrients may also subsidize nearshore coral reefs, but the consequences of guano on complex, anthropogenically modified coral reefs are unknown. The impact of seabird guano on nearshore coral reefs around Moku Nui, an islet with a large seabird colony in Oahu, Hawaii, was investigated in comparison with coral reefs around three islets with lower seabird abundance. Reefs in close proximity to Moku Nui (where thousands of wedge-tailed shearwaters, Puffinus pacificus, breed) had greater concentrations of dissolved phosphate in seawater and greater δ15N in adjacent subtidal macroalgae relative to reefs next to smaller breeding colonies. However, dissolved nitrate was not different among islets. These results indicate that seabirds may be a source of nutrients for the waters surrounding Moku Nui that are already inundated with local and global stressors.


Coral Reef Macroalgae Stable Isotope Analysis Halimeda Seabird Coloni 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are grateful to the faculty and staff at the Hawaii Institute of Marine Biology for assisting in the logistics of this work, particularly F. Thomas, R. Toonen, and J. Jones. We thank G. Marino for fieldwork assistance. We acknowledge B. Patel, K. Mattingly, R. Tallman, J. Bachellier, D. Pruitt, K. McElroy, K. Kopecky, B. Buttler, and J. Walden for laboratory assistance. We thank R. Brainard for suggesting the study site, assistance with experimental design, and editing the manuscript. We thank P. Raimondi, D. Croll, B. Tershy, J. Estes, and M. Beck for their assistance with experimental design, statistics, and editing of the manuscript. We thank M. Foley, R. Franks, and D. Andreasen for their assistance with seawater and stable isotope analyses. We thank A. Marie, L. Young, and the Hawaii Division of Forestry and Wildlife for information on seabird population ecology. Finally, we acknowledge the following funding sources: National Science Foundation Doctoral Dissertation Improvement Grant (#1110815), the Friends of Long Marine Lab Student Education and Research Award, Myers Trust, Center for Tropical Research in Ecology, Agriculture, and Development (CenTREAD) tropical research grant, and Ecology and Evolutionary Biology graduate research and travel grants from the University of California Santa Cruz. No permits were necessary in the collection of algae for this work.


  1. Aeby GS, Williams GJ, Franklin EC et al (2011) Patterns of coral disease across the Hawaiian Archipelago: relating disease to environment. PLoS ONE 6:e20370. doi: 10.1371/journal.pone.0020370 CrossRefGoogle Scholar
  2. Amato D (2015) Ecophysiological responses of macroalgae to submarine groundwater discharge in Hawaii. Dissertation, University of Hawaii, ManoaGoogle Scholar
  3. Anderson W, Polis G (1999) Nutrient fluxes from water to land: seabirds affect plant nutrient status on Gulf of California islands. Oecologia 118:324–332CrossRefGoogle Scholar
  4. Bailey-Brock J, Brock R, Kam A et al (2007) Anthropogenic disturbance on shallow cryptofaunal communities in a marine life conservation district on Oahu, Hawaii. Int Rev Hydrobiol 92:291–300. doi: 10.1002/iroh.200610958 CrossRefGoogle Scholar
  5. Bosman A, Hockey P (1986) Seabird guano as a determinant of rocky intertidal community structure. Mar Ecol Prog Ser 32:247–257. doi: 10.3354/meps032247 CrossRefGoogle Scholar
  6. Cardini U, Bednarz VN, Foster RA, Wild C (2014) Benthic N-2 fixation in coral reefs and the potential effects of human- induced environmental change. Ecol Evol 4:1706–1727. doi: 10.1002/ece3.1050 CrossRefGoogle Scholar
  7. Coles S, Swenson C (2010) Marine biota information base for offshore islets in the Main Hawaiian Islands. Bish Museum Tech Rep 50:1–145Google Scholar
  8. Costanzo SD, Udy J, Longstaff B, Jones A (2005) Using nitrogen stable isotope ratios (delta N-15) of macroalgae to determine the effectiveness of sewage upgrades: changes in the extent of sewage plumes over four years in Moreton Bay, Australia. Mar Pollut Bull 51:212–217. doi: 10.1016/j.marpolbul.2004.10.018 CrossRefGoogle Scholar
  9. Croll D, Maron J, Estes J et al (2005) Introduced predators transform subarctic islands from grassland to tundra. Science 307:1959–1961. doi: 10.1126/science.1108485 CrossRefGoogle Scholar
  10. Fabricius KE (2005) Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar Pollut Bull 50:125–146. doi: 10.1016/j.marpolbul.2004.11.028 CrossRefGoogle Scholar
  11. Fabricius KE, De’Ath G (2004) Identifying ecological change and its causes: a case study on coral reefs. Ecol Appl 14:1448–1465. doi: 10.1890/03-5320 CrossRefGoogle Scholar
  12. Friedlander AM, DeMartini EE (2002) Contrasts in density, size, and biomass of reef fishes between the northwestern and the main Hawaiian Islands: the effects of fishing down apex predators. Mar Ecol Prog Ser 230:253–264. doi: 10.3354/meps230253 CrossRefGoogle Scholar
  13. Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742. doi: 10.1126/science.1152509 CrossRefGoogle Scholar
  14. Hughes TP (1994) Catastrophes, phase-shifts, and large-scale degradation of a Caribbean coral-reef. Science 265:1547–1551. doi: 10.1126/science.265.5178.1547 CrossRefGoogle Scholar
  15. Hughes TP, Baird AH, Bellwood DR et al (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933. doi: 10.1126/science.1085046 CrossRefGoogle Scholar
  16. Hunter CL, Evans CW (1995) Coral-reefs in Kaneohe Bay, Hawaii-2 centuries of western influence and 2 decades of data. Bull Mar Sci 57:501–515Google Scholar
  17. Jokiel PL, Hunter CL, Taguchi S, Watarai L (1993) Ecological impact of a fresh-water reef kill in Kaneohe Bay, Oahu, Hawaii. Coral Reefs 12:177–184. doi: 10.1007/BF00334477 CrossRefGoogle Scholar
  18. Kolb GS, Jerling L, Hamback PA (2010) The impact of cormorants on plant–arthropod food webs on their nesting islands. Ecosystems 13:353–366. doi: 10.1007/s10021-010-9323-8 CrossRefGoogle Scholar
  19. Lapointe BE, Clarke MW (1992) Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15:465–476. doi: 10.2307/1352391 CrossRefGoogle Scholar
  20. Lindeboom HJ (1984) The nitrogen pathway in a penguin rookery. Ecology 65:269. doi: 10.2307/1939479 CrossRefGoogle Scholar
  21. Littler MM, Littler DS, Titlyanov EA (1991) Comparisons of N-limited and P-limited productivity between high granitic islands versus low carbonate atolls in the Seychelles archipelago—a test of the relative-dominance paradigm. Coral Reefs 10:199–209. doi: 10.1007/BF00336775 CrossRefGoogle Scholar
  22. McCauley DJ, Desalles PA, Young HS et al (2012) From wing to wing: the persistence of long ecological interaction chains in less-disturbed ecosystems. Nature 2:409. doi: 10.1038/srep00409 Google Scholar
  23. Mcclelland JW, Valiela I, Michener RH (1997) Nitrogen-stable isotope signatures in estuarine food webs: a record of increasing isotope signatures in coastal watersheds. Limnol Oceanogr 42:930–937CrossRefGoogle Scholar
  24. Nystrom M, Folke C, Moberg F (2000) Coral reef disturbance and resilience in a human-dominated environment. Trends Ecol Evol 15:413–417. doi: 10.1016/S0169-5347(00)01948-0 CrossRefGoogle Scholar
  25. Pandolfi JM, Bradbury RH, Sala E et al (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958. doi: 10.1126/science.1085706 CrossRefGoogle Scholar
  26. Polis GA, Hurd SD (1995) Extraordinarily high spider densities on islands: flow of energy from the marine to terrestrial food webs and the absence of predation. Proc Natl Acad Sci USA 92:4382–4386CrossRefGoogle Scholar
  27. Polis G, Hurd S (1996) Linking marine and terrestrial food webs: allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am Nat 147:396–423CrossRefGoogle Scholar
  28. Pyle R, Pyle P (2009) The birds of the Hawaiian Islands: occurrence, history, distribution, and status. In: BP Bish. Museum, Honolulu, HI, USA Version 1. Accessed 15 April 2015
  29. Schmidt S, Dennison WC, Moss GJ, Stewart GR (2004) Nitrogen ecophysiology of Heron Island, a subtropical coral cay of the Great Barrier Reef, Australia. Funct Plant Biol 31:517–528. doi: 10.1071/FP04024 CrossRefGoogle Scholar
  30. Smith S (1984) Phosphorus versus nitrogen limitation in the marine-environment. Limnol Oceanogr 29:1149–1160CrossRefGoogle Scholar
  31. Smith JS, Johnson CR (1995) Nutrient inputs from seabirds and humans on a populated coral cay. Mar Ecol Prog Ser 124:189–200CrossRefGoogle Scholar
  32. Smith SV, Kimmerer WJ, Laws EA et al (1981) Kaneohe Bay sewage diversion experiment: perspectives on ecosystem responses to nutritional perturbation. Pacific Sci 35:279–402Google Scholar
  33. Smith DG, Shiinoki EK, VanderWerf EA (2006) Recovery of native species following rat eradication on Mokoli’i Island, O’ahu, Hawai’i. Pac Sci 60:299–303. doi: 10.1353/psc.2006.0012 CrossRefGoogle Scholar
  34. Spatz DR, Newton KM, Heinz R et al (2014) The biogeography of globally threatened seabirds and island conservation opportunities. Conserv Biol 28:1282–1290. doi: 10.1111/cobi.12279 CrossRefGoogle Scholar
  35. Stimson J, Larned ST, Conklin E (2001) Effects of herbivory, nutrient levels, and introduced algae on the distribution and abundance of the invasive macroalga Dictyosphaeria cavernosa in Kaneohe Bay, Hawaii. Coral Reefs 19:343–357CrossRefGoogle Scholar
  36. Szpak P, Longstaffe FJ, Millaire JF, White CD (2012) Stable isotope biogeochemistry of seabird guano fertilization: results from growth chamber studies with maize (Zea Mays). PLoS ONE. doi: 10.1371/journal.pone.0033741 Google Scholar
  37. Timm OE, Giambelluca TW, Diaz HF (2015) Statistical downscaling of rainfall changes in Hawaii based on the CMIP5 global model projections. J Geophys Res 120:92–112. doi: 10.1002/2014JD022059 CrossRefGoogle Scholar
  38. Williams ID, Walsh WJ, Miyasaka A, Friedlander AM (2006) Effects of rotational closure on coral reef fishes in Waikiki-Diamond Head Fishery Management Area, Oahu, Hawaii. Mar Ecol Prog Ser 310:139–149. doi: 10.3354/meps310139 CrossRefGoogle Scholar
  39. Williams ID, Richards BL, Sandin SA et al (2011) Differences in reef fish assemblages between populated and remote reefs spanning multiple archipelagos across the central and western Pacific. J Mar Biol 2011:1–14. doi: 10.1155/2011/826234 CrossRefGoogle Scholar
  40. Wootton J (1991) Direct and indirect effects of nutrients on intertidal community structure: variable consequences of seabird guano. J Exp Mar Bio Ecol 151:139–153. doi: 10.1016/0022-0981(91)90121-C CrossRefGoogle Scholar
  41. Young HS, McCauley DJ, Dunbar RB, Dirzo R (2010) Plants cause ecosystem nutrient depletion via the interruption of bird-derived spatial subsidies. Proc Natl Acad Sci USA 107:2072–2077. doi: 10.1073/pnas.0914169107 CrossRefGoogle Scholar
  42. Young LC, VanderWerf EA, Lohr MT et al (2013) Multi-species predator eradication within a predator-proof fence at Ka’ena Point, Hawai’i. Biol Invasions 15:2627–2638. doi: 10.1007/s10530-013-0479-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Ecology and Evolutionary Biology DepartmentUniversity of California Santa CruzSanta CruzUSA
  2. 2.Molecular, Cell and Developmental Biology DepartmentUniversity of California Santa CruzSanta CruzUSA

Personalised recommendations