Skip to main content

Islands in the stream: kelp detritus as faunal magnets

Abstract

Biomass from nearshore primary producers can be an important subsidy to both pelagic and benthic communities, which are disconnected in space from sources of production. We examine the role of this macrophyte biomass in two habitats (pelagic and nearshore benthic) in terms of both trophic support and spatial refugia. Experimental benthic “islands” of seaweed biomass created nearshore subtidal habitats (at 10–30 m depth) which were colonized by diverse fauna, ranging from abundant harpacticoid copepods, to shrimp and snails, to small fishes. The abundance and species composition of colonizers varied somewhat among kelp species and with the degree of degradation of the kelp. Use of plastic strips as kelp mimics allowed us to decouple primary trophic and refugia effects; plastic attracted some macrofauna but far fewer organisms in the <1.5 mm size class. Observational data taken from floating pelagic detrital islands showed that these algal rafts similarly attract many small crustaceans and other invertebrates, which then can serve as prey for consumers such as juvenile rockfish. The fauna of the pelagic drift islands was dominated by harpacticoid copepods and gammarid amphipods. Stomach contents of associated juvenile splitnose rockfish were dominated by gammarids and calanoid copepods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  • Britton-Simmons KH, Foley G, Okamoto D (2009) Spatial subsidy in the subtidal zone: utilization of drift algae by a deep subtidal sea urchin. Aquat Biol 5:233–243

    Article  Google Scholar 

  • Britton-Simmons KH, Rhoades AL, Pacunski RE, Galloway AWE, Lowe AT, Sosik EA, Dethier MN, Duggins DO (2012) Habitat and bathymetry influence the landscape-scale distribution and abundance of drift macrophytes and associated invertebrates. Limnol Oceanogr 57(1):176–184

    Article  Google Scholar 

  • Buckley RM (1997) Substrate associated recruitment of juvenile Sebastes in artificial and natural habitats in Puget Sound and the San Juan Archipelago, Washington. Dissertation, University of Washington, Seattle

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Colombini I, Chelazzi L (2003) Influence of marine allochthonous input on sandy beach communities. Oceanogr Mar Biol Annu Rev 41:115–159

    Google Scholar 

  • Dayton PK (1985) Ecology of kelp communities. Annu Rev Ecol Syst 16:214–245

    Article  Google Scholar 

  • Dethier MN, Brown AS, Burgess S, Eisenlord ME, Galloway AWE, Kimber J, Lowe AT, O’Neil CM, Raymond WW, Sosik EA, Duggins DO (2014) Degrading detritus: changes in food quality of aging kelp tissue varies with species. J Exp Mar Biol Ecol 460:72–79

    Article  Google Scholar 

  • Duarte CM, Cebrian J (1996) The fate of marine autotrophic production. Limnol Oceanogr 41:1758–1766

    CAS  Article  Google Scholar 

  • Dugan JE, Hubbard DM, McCrary MD, Pierson MO (2003) The response of macrofauna communities and shorebirds to macrophyte wrack subsidies on exposed sandy beaches of southern California. Estuar Coast Shelf Sci 58:25–40

    Article  Google Scholar 

  • Duggins DO (1980) Kelp beds and sea otters: an experimental approach. Ecology 61:447–453

    Article  Google Scholar 

  • Duggins DO, Eckman JE (1994) The role of kelp detritus in the growth of benthic suspension feeders in an understory kelp forest. J Exp Mar Biol Ecol 176:53–68

    Article  Google Scholar 

  • Filbee-Dexter K, Scheibling RE (2012) Hurricane-mediated defoliation of kelp beds and pulsed delivery of kelp detritus to offshore sedimentary habitats. Mar Ecol Prog Ser 455:51–64

    Article  Google Scholar 

  • Fox CH, El-Sabaawi R, Paquet PC, Reimchen TE (2014) Pacific herring Clupea pallasii and wrack macrophytes subsidize semi-terrestrial detritivores. Mar Ecol Prog Ser 495:49–64

    CAS  Article  Google Scholar 

  • Goldstein MC, Carson HS, Eriksen M (2014) Relationship of diversity and habitat area in North Pacific plastic associated rafting communities. Mar Biol 161:1441–1453

    Article  Google Scholar 

  • Gómez-Buckley MC (2000) Feeding ecology of juvenile splitnose rockfish (Sebastes diploproa) associated with drifting habitats in the central San Juan Archipelago, Washington. Masters thesis, University of Washington, Seattle

  • Gorelova TA, Fedoryako BI (1986) Topic and trophic relationships of fishes associated with drifting Sargassum algae. J Ichthy 26(2):63–72

    Google Scholar 

  • Gutow L, Beermann J, Buschbaum C, Rivadeneria MM, Theil M (2015) Castaways can’t be choosers—homogenization of rafting assemblages on floating seaweeds. J Sea Res 95:161–171

    Article  Google Scholar 

  • Hagen EM, McCluney KE, Wyant KA et al (2012) A meta-analysis of the effects of detritus on primary producers and consumers in marine, freshwater, and terrestrial ecosystems. Oikos 121:1507–1515. doi:10.1111/j.1600-0706.2011.19666.x

    Article  Google Scholar 

  • Hernández-Carmona G, Hughes B, Graham MH (2006) Reproductive longevity of drifting kelp Macrocystis pyrifera (Phaeophyceae) in Monterey Bay, USA. J Phycol 42:1199–1207

    Article  Google Scholar 

  • Hinojosa IA, Pizarro M, Ramos M, Thiel M (2010) Spatial and temporal distribution of floating kelp in the channels and fjords of southern Chile. Estuar Coast Shelf Sci 87:367–377. doi:10.1016/j.ecss.2009.12.010

    Article  Google Scholar 

  • Hobday AJ (2000) Abundance and dispersal of drifting kelp Macrocystis pyrifera rafts in the Southern California Bight. Mar Ecol Prog Ser 195:101–116. doi:10.3354/meps195101

    Article  Google Scholar 

  • Kelly RJ, Krumhansl KA, Scheibling RE (2012) Drift algal subsidies to sea urchins in low productivity habitats. Mar Ecol Prog Ser 452:145–157

    Article  Google Scholar 

  • Kingsford MJ, Choat JH (1985) The fauna associated with drift algae captured with a plankton-mesh purse seine net. Limnol Oceanogr 30:618–630

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2011) Detrital production in Nova Scotian kelp beds: patterns and processes. Mar Ecol Prog Ser 421:67–82

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012a) Production and fate of kelp detritus. Mar Ecol Prog Ser 467:281–302

    Article  Google Scholar 

  • Krumhansl KA, Scheibling RE (2012b) Detrital subsidy from subtidal algal beds is altered by the invasive green alga Codium fragile ssp. fragile. Mar Ecol Prog Ser 456:73–85

    Article  Google Scholar 

  • Lowe AT, Whippo R, Galloway AWE, Britton-Simmons KH, Dethier MN (2015) Sedentary urchins influence benthic community composition below the macroalgal zone. Mar Ecol 36:129–140

    Article  Google Scholar 

  • Mann KH (1973) Seaweeds: their productivity and strategy for growth. Science 182:975–981

    CAS  Article  Google Scholar 

  • Mann KH (1988) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930

    CAS  Article  Google Scholar 

  • Mascart T, Agusto L, Lepoint G, Remy F, De Troch M (2015) How do harpacticoid copepods colonize detrital seagrass leaves? Mar Biol 162:929–943

    Article  Google Scholar 

  • McLean JH, Gosliner TM (1996) Taxonomic Atlas of the benthic fauna of the Santa Maria basin and western Santa Barbara Channel. Volume 9. In: Scott PH, Blake JA, Lissner AL (eds) The Mollusca, part 2: the Gastropoda. Santa Barbara Museum of Natural History, Santa Barbara

    Google Scholar 

  • Murie LJ (1959) Fauna of the Aleutian Islands and Alaska Peninsula. N Am Fauna 61:1–364

    Article  Google Scholar 

  • Newell RC, Lucas MI, Velimirov B, Seiderer LJ (1980) Quantitative significance of dissolved organic losses following fragmentation of kelp (Ecklonia maxima and Laminaria pallida). Mar Ecol Prog Ser 2:45–59

    CAS  Article  Google Scholar 

  • Nordstrom M, Booth DM (2007) Drift algae reduce foraging efficiency of juvenile flatfish. J Sea Res 58:335–341

    Article  Google Scholar 

  • Okey TA (2003) Macrobenthic colonist guilds and renegades in Monterey Canyon (USA) drift algae: partitioning multidimensions. Ecol Monogr 73:415–440

    Article  Google Scholar 

  • Orr M, Zimmer M, Jelinski DE, Mews M (2005) Wrack deposition on different beach types: spatial and temporal variation in the pattern of subsidy. Ecology 86:1496–1507. doi:10.1890/04-1486

    Article  Google Scholar 

  • Orr KK, Wilding TA, Horstmeyer L, Weigl S, Heymans JJ (2014) Detached macroalgae: its importance to inshore sandy beach fauna. Estuar Coast Shelf Sci 150:125–135

    CAS  Article  Google Scholar 

  • Polis GA, Power ME, Huxel GR (eds) (2004) Food webs at the landscape level. University of Chicago Press, Chicago

    Google Scholar 

  • Reed DC, Rassweiler A, Arkema KK (2008) Biomass rather than growth rate determines variation in net primary production by giant kelp. Ecology 89:2493–2505. doi:10.1890/07-1106.1

    Article  Google Scholar 

  • Rothäusler E, Gómez I, Hinojosa IA et al (2009) Effect of temperature and grazing on growth and reproduction of floating Macrocystis spp. (Phaeophyceae) along a latitudinal gradient. J Phycol 45:547–559. doi:10.1111/j.1529-8817.2009.00676.x

    Article  Google Scholar 

  • Shaffer JA, Doty DC, Buckley RM, West JE (1995) Crustacean community composition and trophic use of the drift vegetation habitat by juvenile splitnose rockfish Sebastes diploproa. Mar Ecol Prog Ser 123:13–21

    Article  Google Scholar 

  • Steinberg PD (1985) Feeding preferences of Tegula funebralis and chemical defenses of marine brown algae. Ecol Monogr 55:333–349

    Article  Google Scholar 

  • Van Guelpen L, Markle DF, Duggan DJ (1982) An evaluation of accuracy, precision, and speed of several zooplankton subsampling techniques. J Cons Int Explor Mer 40:226–236

    Article  Google Scholar 

  • Vanderklift MA, Wernberg T (2008) Detached kelps from distant sources are a food subsidy for sea urchins. Oecologia 157:327–335

    Article  Google Scholar 

  • Vanderklift M, Wernberg T (2010) Stable isotopes reveal a consistent consumer—diet relationship across hundreds of kilometres. Mar Ecol Prog Ser 403:53–61

    Article  Google Scholar 

  • Vetter EW (1994) Hotspots of benthic production. Nature 372:47. doi:10.1038/372047a0

    CAS  Article  Google Scholar 

  • Vetter EW, Dayton PK (1999) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon. Deep Sea Res 45:25–54

    Article  Google Scholar 

  • Wichmann C-S, Hinojosa IA, Thiel M (2012) Floating kelps in Patagonian Fjords: an important vehicle for rafting invertebrates and its relevance for biogeography. Mar Biol 159:2035–2049. doi:10.1007/s00227-012-1990-

    CAS  Article  Google Scholar 

  • Wright JM (1989) Detached chlorophytes as nursery areas for fish in Sulaibikhat Bay, Kuwait. Estuar Coast Shelf Sci 28:185–193

    Article  Google Scholar 

  • Yamasaki M, Aono M, Ogawa N, Tanaka K, Imoto Z, Nakamura Y (2014) Drifting algae and fish: implications of tropical Sargassum invasion due to ocean warming in western Japan. Est Coast Shelf Sci 147:32–41

    Article  Google Scholar 

Download references

Acknowledgments

We thank L. Dennee-Lee, A. Gjurasic, A. Gómez-Buckley, and J. Schulte for helping to sort zooplankton samples; K. Page for work on some of the floating habitats; numerous dive assistants from FHL; and the Friday Harbor Laboratories and School of Aquatic and Fishery Sciences for use of space and facilities. W. Raymond and R. Whippo assisted with subtidal experiments. This work was supported by the National Science Foundation (NSF; Biological Oceanography Division of Ocean Sciences grant 0925718) and an RET supplement. We appreciate the constructive comments of K. Krumhansl and one additional reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Duggins.

Additional information

Responsible Editor: F. Bulleri.

Reviewed by K. Krumhansl and an undisclosed expert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 367 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duggins, D.O., Gómez-Buckley, M., Buckley, R. et al. Islands in the stream: kelp detritus as faunal magnets. Mar Biol 163, 17 (2016). https://doi.org/10.1007/s00227-015-2781-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00227-015-2781-y

Keywords

  • Macrophyte
  • Detritus
  • Meiofauna
  • Calanoid Copepod
  • Kelp Forest