Marine Biology

, Volume 162, Issue 11, pp 2171–2186 | Cite as

Estimating zooplankton vertical distribution from combined LOPC and ZooScan observations on the Brazilian Coast

  • Catarina R. Marcolin
  • Rubens M. Lopes
  • George A. Jackson
Original Paper

Abstract

Although the technology for sampling zooplankton is rapidly evolving, it remains a challenge to determine species distributions with high spatial resolution. This study reports on a technique developed to estimate the mesozooplankton vertical distribution by combining the spatial resolution possible with laser optical particle counter (LOPC) profiles with the taxonomic resolution possible with vertically integrated zooplankton net samples. Data obtained from different coastal and oceanic ecosystems off Brazil were used for our analysis. The aggregate signals from LOPC data sets were removed, and the distributions of the residual Zo-particles, believed to describe zooplankton, were calculated. Significant correlations were then identified between the abundances of the Zo-particles in different size classes and the abundance and size distributions of zooplankton collected in a vertical integrated net sample and classified with a ZooScan system. A principal component analysis was carried out to identify and exclude outliers. After these procedures, multiple linear regression analyses were used to detect relationships among abundances of different zooplankton groups and multiple Zo-particle size classes. The resulting relationships were used to estimate the vertical distributions of the dominant zooplankton taxa—calanoids, poecilostomatoids, shrimp-like, and appendicularians—through the water column from the LOPC data. The results achieved the goal of estimating distributions of dominant zooplankton taxa with an improved spatial resolution. The analytical technique described here enabled the analysis of zooplankton vertical structure in a wide range of marine ecosystems off Brazil and could serve as a basis to revisit historical data collected with similar methods elsewhere.

Supplementary material

227_2015_2753_MOESM1_ESM.pdf (92 kb)
Supplementary material 1 (PDF 92 kb)
227_2015_2753_MOESM2_ESM.pdf (73 kb)
Supplementary material 2 (PDF 72 kb)
227_2015_2753_MOESM3_ESM.pdf (86 kb)
Supplementary material 3 (PDF 85 kb)
227_2015_2753_MOESM4_ESM.pdf (119 kb)
Supplementary material 4 (PDF 119 kb)

References

  1. Alldredge AL (1972) Abandoned larvacean houses: a unique food source in the pelagic environment. Science 177:885–887. doi:10.1126/science.177.4052.885 CrossRefGoogle Scholar
  2. Basedow SL, Tande KS, Zhou M (2010) Biovolume spectrum theories applied: spatial patterns of trophic levels within a mesozooplankton community at the polar front. J Plankton Res 32:1105–1119. doi:10.1093/plankt/fbp110 CrossRefGoogle Scholar
  3. Basedow SL, Tande KS, Norrbin MF, Kristiansen SA (2013) Capturing quantitative zooplankton information in the sea: performance test of laser optical plankton counter and video plankton recorder in a Calanus finmarchicus dominated summer situation. Prog Oceanogr 108:72–80. doi:10.1016/j.pocean.2012.10.005 CrossRefGoogle Scholar
  4. Benfield MC, Grosjean P, Culverhouse PF, Irigoien X, Sieracki ME, Lopez-Urrutia A, Dam HG, Hu Q, Davis CS, Hansen A, Piskaln CH, Riseman EM, Schultz H, Utgoff PE, Gorsky G (2007) RAPID research on automated plankton identification. Oceanography 20:172–187CrossRefGoogle Scholar
  5. Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57. doi:10.4319/lo.2004.49.1.0051 CrossRefGoogle Scholar
  6. Checkley DM, Davis RE, Herman AW, Jackson GA, Beanlands B, Regier LA (2008) Assessing plankton and other particles in situ with the SOLOPC. Limnol Oceanogr 53:2123–2136CrossRefGoogle Scholar
  7. Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (IS IIS): system design and preliminary results. Limnol Oceanogr Methods 6:126–132CrossRefGoogle Scholar
  8. Davis CS, Thwaites FT, Gallager SM, Hu Q (2005) A three-axis fast-tow digital Video Plankton Recorder for rapid surveys of plankton taxa and hydrography. Limnol Oceanogr MethodsOceanography methods 3:59–74CrossRefGoogle Scholar
  9. Gorsky G, Ohman MD, Picheral M, Gasparini S, Stemmann L, Romagnan J-B, Cawood A, Pesant S, García-Comas C, Prejger F (2010) Digital zooplankton image analysis using the ZooScan integrated system. J Plankton Res 32:285–303. doi:10.1093/plankt/fbp124 CrossRefGoogle Scholar
  10. Green EP, Dagg MJ (1997) Mesozooplankton associations with medium to large marine snow aggregates in the northern Gulf of Mexico. J Plankton Res 19:435–447. doi:10.1093/plankt/19.4.435 CrossRefGoogle Scholar
  11. Grosjean P, Picheral M, Warembourg C, Gorsky G (2004) Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system. ICES J Mar Sci 61:518–525. doi:10.1016/j.icesjms.2004.03.012 CrossRefGoogle Scholar
  12. Herman AW, Harvey M (2006) Application of normalized biomass size spectra to laser optical plankton counter net intercomparisons of zooplankton distributions. J Geophys Res 111:1–9. doi:10.1029/2005JC002948 Google Scholar
  13. Herman AW, Beanlands B, Phillips EF (2004) The next generation of optical plankton counter: the laser-OPC. J Plankton Res 26:1135–1145CrossRefGoogle Scholar
  14. Hodge VJ, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22:85–126CrossRefGoogle Scholar
  15. Jackson GA, Checkley DM (2011) Particle size distributions in the upper 100 m water column and their implications for animal feeding in the plankton. Deep Res Part I 58:283–297. doi:10.1016/j.dsr.2010.12.008 CrossRefGoogle Scholar
  16. Jackson GA, Maffione R, Costello DK, Alldredge AL, Logan BE, Dam HG (1997) Particle size spectra between 1 mm and 1 cm at Monterey Bay determined using multiple instruments. Deep-Sea Res I 44:1739–1767CrossRefGoogle Scholar
  17. Jackson GA, Checkley DM, Dagg M (2015) Settling of particles in the upper 100 m of the ocean detected with autonomous profiling floats off California. Deep Sea Res I 99:75–86. doi:10.1016/j.dsr.2015.02.001 CrossRefGoogle Scholar
  18. Koski M, Kiørboe T, Takahashi K (2005) Benthic life in the pelagic: aggregate encounter and degradation rates by pelagic harpacticoid copepods. Limnol Oceanogr 50:1254–1263. doi:10.4319/lo.2005.50.4.1254 CrossRefGoogle Scholar
  19. Lampitt RS, Wishner KF, Turley CM, Angel MV (1993) Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Mar Biol 116:689–702CrossRefGoogle Scholar
  20. Lopes RM (2007) Marine zooplankton studies in Brazil: a brief evaluation and perspectives. Acad Bras Cienc 79:369–379Google Scholar
  21. MacIntyre S, Alldredge AL, Gotschalk CC (1995) Accumulation of marine snow at density discontinuities in the water column. Limnol Oceanogr 40:449–468CrossRefGoogle Scholar
  22. Marcolin CR, Schultes S, Jackson GA, Lopes RM (2013) Plankton and seston size spectra estimated by the LOPC and ZooScan in the Abrolhos Bank ecosystem (SE Atlantic). Cont Shelf Res 70:74–87. doi:10.1016/j.csr.2013.09.022 CrossRefGoogle Scholar
  23. Marcolin CR, Gaeta S, Lopes RM (2015) Seasonal and interannual variability of zooplankton vertical distribution and biomass size spectra off Ubatuba, Brazil. J Plankton Res 1–12. doi:10.1093/plankt/fbv035
  24. Mitra A, Castellani C, Gentleman WC, Jónasdóttir SH, Flynn KJ, Bode A, Halsband C, Kuhn P, Licandro P, Agersted MD, Calbet A, Lindeque PK, Koppelmann R, Møller EF, Gislason A, Nielsen TG, StJohn M (2014) Bridging the gap between marine biogeochemical and fisheries sciences; configuring the zooplankton link. Prog Oceanogr 129:176–199. doi:10.1016/j.pocean.2014.04.025 CrossRefGoogle Scholar
  25. Morgan PP (1994) SEAWATER: A library of MATLAB computational routines for the properties of sea water: Version 1.2. CSIRO Marine LaboratoriesGoogle Scholar
  26. Omori M, Ikeda T (1984) Methods in marine zooplankton ecology. John Wiley and Sons, New YorkGoogle Scholar
  27. Paffenhöfer G-A (1983) Vertical zooplankton distribution on the northeastern Florida shelf and its relation to temperature and food abundance. J Plankton Res 5:15–33CrossRefGoogle Scholar
  28. Petrik CM, Jackson GA, Checkley DM (2013) Aggregates and their distributions determined from LOPC observations made using an autonomous profiling float. Deep Sea Res Part I Oceanogr Res Pap 74:64–81. doi:10.1016/j.dsr.2012.12.009 CrossRefGoogle Scholar
  29. Roullier F, Berline L, Guidi L, Sciandra A, Durrieu De Madron X, Picheral M, Pesant S, Stemmann L (2014) Particle size distribution and estimated carbon flux across the Arabian Sea oxygen minimum zone. Biogeosciences 11:4541–4557. doi:10.5194/bg-11-4541-2014 CrossRefGoogle Scholar
  30. Schultes S, Lopes RM (2009) Laser optical plankton counter and Zooscan intercomparison in tropical and subtropical marine ecosystems. Limnol Oceanogr Methods 7:771–784. doi:10.4319/lom.2009.7.771 CrossRefGoogle Scholar
  31. Shanks AL, Walters K (1997) Holoplankton, meroplankton, and meiofauna associated with marine Snow. Mar Ecol Prog Ser 156:75–86CrossRefGoogle Scholar
  32. Sieracki CK, Sieracki ME, Yentsch CS (1998) An imaging-in-flow system for automated analysis of marine microplankton. Mar Ecol Prog Ser 168:285–296. doi:10.3354/meps168285 CrossRefGoogle Scholar
  33. Sullivan JM, Donaghay PL, Rines JEB (2010) Coastal thin layer dynamics: consequences to biology and optics. Cont Shelf Res 30:50–65. doi:10.1016/j.csr.2009.07.009 CrossRefGoogle Scholar
  34. Trudnowska E, Szczucka J, Hoppe L, Boehnke R, Hop H, Blachowiak-Samolyk K (2012) Multidimensional zooplankton observations on the northern West Spitsbergen Shelf. J Mar Syst 98–99:18–25. doi:10.1016/j.jmarsys.2012.03.001 CrossRefGoogle Scholar
  35. Uye S, Aoto I, Onbé T (2002) Seasonal population dynamics and production of Microsetella norvegica, a widely distributed but little-studied marine planktonic harpacticoid copepod. J Plankton Res 24:143–153CrossRefGoogle Scholar
  36. Van Selst M, Jolicoeur P (1994) A solution to the effect of sample size on outlier elimination. Q J Exp Psychol Sect A 47:631–650. doi:10.1080/14640749408401131 CrossRefGoogle Scholar
  37. Vandromme P, Nogueira E, Huret M, Lopez-Urrutia Á, González-Nuevo González G, Sourisseau M, Petitgas P (2014) Springtime zooplankton size structure over the continental shelf of the Bay of Biscay. Ocean Sci 10:821–835. doi:10.5194/os-10-821-2014 CrossRefGoogle Scholar
  38. Wiebe PH, Benfield MC (2003) From the Hensen net toward four-dimensional biological oceanography. Prog Oceanogr 56:7–136. doi:10.1016/S0079-6611(02)00140-4 CrossRefGoogle Scholar
  39. Wiebe PH, Holland WR (1968) Plankton patchiness: effects on repeated net tows. Limnol Oceanogr 13(2):315–321CrossRefGoogle Scholar
  40. Yamaguchi A, Matsuno K, Abe Y et al (2014) Seasonal changes in zooplankton abundance, biomass, size structure and dominant copepods in the Oyashio region analysed by an optical plankton counter. Deep Sea Res I 91:115–124. doi:10.1016/j.dsr.2014.06.003 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Oceanographic InstituteUniversity of São PauloSão PauloBrazil
  2. 2.Department of OceanographyTexas A&M University; 3146 TAMUCollege StationUSA

Personalised recommendations