Skip to main content

Advertisement

Log in

Ontogenetic habitat utilization patterns of juvenile reef fish in low-predation habitats

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Food and predation are considered to represent the main factors affecting habitat selection by juvenile reef fish. Generally, coral reefs shelter more invertebrate prey but also harbor more predators compared to vegetated areas. To avoid predation, many juvenile fish may select lower-risk vegetated areas rather than coral reefs. Very little information is known about habitat selection by juvenile fish if coral reefs have similar predation rates as vegetated areas. In this study, we quantified the density, diet, survival rate, and food availability of four reef fish species (Lethrinus harak, L. obsoletus, Lutjanus gibbus, and Parupeneus indicus) as well as predator and competitor density within a low-predation lagoon containing bare sand, coral reefs, and seagrass beds. The results showed that the two lethrinids used seagrass beds as primary habitats as small juveniles. Large juveniles of L. obsoletus (5 cm total length after dietary shift) and most juvenile L. gibbus preferred coral reefs. P. indicus were dietary generalists in most habitats. Overall, these instances of ontogenetic habitat selection may be related to variations in diet in each species. We also found that predation rates were extremely low (<30 %) in both coral and seagrass habitats and that coral reefs sheltered higher invertebrate prey densities (80 ind m−2) than did seagrass beds (30 ind m−2) and bare sand (<10 ind m−2). We hypothesized that competition is a factor potentially affecting habitat selection by juvenile reef fish, as more competitor fish inhabited coral reefs. Fish optimize the advantages of particular habitats for growth and for avoiding competition by selecting ideal habitats under conditions of low predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams SM (1976) Feeding ecology of eelgrass fish communities. Trans Am Fish Soc 105:514–519. doi:10.1577/1548-8659(1976)105<514:FEOEFC>2.0.CO;2

    Article  Google Scholar 

  • Adams AJ, Dahlgren CP, Kellison GT, Kendall MS, Layman CA, Ley JA, Nagelkerken I, Serafy JE (2006) Nursery function of tropical back-reef systems. Mar Ecol Prog Ser 318:287–301. doi:10.3354/meps318287

    Article  Google Scholar 

  • Almany GR, Webster MS (2006) The predation gauntlet: early post-settlement mortality in reef fishes. Coral Reefs 25:19–22. doi:10.1007/s00338-005-0044-y

    Article  Google Scholar 

  • Arvedlund M, Takemura A (2006) The importance of chemical environmental cues for juvenile Lethrinus nebulosus Forsskål (Lethrinidae, Teleostei) when settling into their first benthic habitat. J Exp Mar Biol Ecol 338:112–122. doi:10.1016/j.jembe.2006.07.001

    Article  CAS  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cocheret de la Morinière E, Pollux BJA, Nagelkerken I, Hemminga MA, Huiskes AL, van der Velde G (2003) Ontogenetic dietary changes of coral reef fish during life cycle migrations in the mangrove-seagrass-reef continuum: stable isotopes and gut contents analysis. Mar Ecol Prog Ser 246:279–289. doi:10.3354/meps246279

    Article  Google Scholar 

  • Dahlgren CP, Eggleston DB (2000) Ecological processes underlying ontogenetic habitat shifts in a coral reef fish. Ecology 81:2227–2240. doi:10.1890/0012-9658(2000)081[2227:EPUOHS]2.0.CO;2

    Article  Google Scholar 

  • DeMartini EE, Anderson TW, Friedlander AM, Beets JP (2011) Predator biomass, prey density, and species composition effects on group size in recruit coral reef fishes. Mar Biol 158:2437–2447. doi:10.1007/s00227-011-1745-0

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Christianen MJA, Nagelkerken I, van der Velde G (2005a) Indo-Pacific seagrass beds and mangroves contribute to fish density and diversity on adjacent coral reefs. Mar Ecol Prog Ser 302:63–76. doi:10.3354/meps302063

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Nagelkerken I, van der Velde G (2005b) Distribution of coral reef fishes along a coral reef-seagrass gradient: edge effects and habitat segregation. Mar Ecol Prog Ser 299:277–288. doi:10.3354/meps299277

    Article  Google Scholar 

  • Dorenbosch M, Grol MGG, Groene A, van der Velde G, Nagelkerken I (2009) Piscivore assemblages and predation pressure affect relative safety of some back-reef habitats for juvenile fish in a Caribbean bay. Mar Ecol Prog Ser 379:181–196. doi:10.3354/meps07896

    Article  Google Scholar 

  • Feeney WE, Lönnstedt OM, Bosiger Y, Martin J, Jones GP, Rowe RJ, McCormick MI (2012) High rate of prey consumption in a small predatory fish on coral reefs. Coral Reefs 31:909–918. doi:10.1007/s00338-012-0894-z

    Article  Google Scholar 

  • Grol MGG, Dorenbosch M, Kokkelmans EM, Nagelkerken I (2008) Mangroves and seagrass beds do not enhance growth of early juveniles of a coral reef fish. Mar Ecol Prog Ser 366:137–146. doi:10.3354/meps07509

    Article  Google Scholar 

  • Grol MGG, Nagelkerken I, Rypel AL, Layman CA (2011) Simple ecological trade-offs give rise to emergent cross-ecosystem distributions of a coral reef fish. Oecologia 165:79–88. doi:10.1007/s00442-010-1833-8

    Article  Google Scholar 

  • Grol MGG, Rypel AL, Nagelkerken I (2014) Growth potential and predation risk drive ontogenetic shifts among nursery habitats in a coral reef fish. Mar Ecol Prog Ser 502:229–244. doi:10.3354/meps10682

    Article  Google Scholar 

  • Hixon MA, Jones GP (2005) Competition, predation, and density-dependent mortality in demersal marine fishes. Ecology 86:2847–2859. doi:10.1890/04-1455

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (2002) Competition for shelter space causes density-dependent predation mortality in damselfishes. Ecology 83:2855–2868. doi:10.1890/0012-9658(2002)083[2855:CFSSCD]2.0.CO;2

    Article  Google Scholar 

  • Hurlbert SH (1978) The measurement of niche overlap and some relatives. Ecology 59:67–77. doi:10.2307/1936632

    Article  Google Scholar 

  • Hyslop EJ (1980) Stomach contents analysis: a review of methods and their application. J Fish Biol 17:411–429. doi:10.1111/j.1095-8649.1980.tb02775.x

    Article  Google Scholar 

  • Jones GP (1986) Food availability affects growth in a coral reef fish. Oecologia 70:136–139. doi:10.1007/BF00377123

    Article  Google Scholar 

  • Jones GP, McCormick MI (2002) Interaction between energetic and numerical processes in the ecology of coral reef fish populations. In: Sale PF (ed) Coral reef fishes: dynamics and diversity in a complex ecosystem. Academic Press, San Diego, pp 221–238

    Chapter  Google Scholar 

  • Kimirei IA, Nagelkerken I, Trommelen M, Blankers P, Van Hoytema N, Hoeijmakers D, Huijbers CM, Mgaya YD, Rypel AL (2013) What drives ontogenetic niche shifts of fishes in coral reef ecosystems? Ecosystems 16:783–796. doi:10.1007/s10021-013-9645-4

    Article  Google Scholar 

  • Kimirei IA, Nagelkerken I, Griffioen B, Wagner C, Mgaya YD (2011) Ontogenetic habitat use by mangrove/seagrass-associated coral reef fishes shows flexibility in time and space. Estuar Coast Shelf Sci 92:47–58. doi:10.1016/j.ecss.2010.12.016

    Article  Google Scholar 

  • Liu PJ, Shao KT, Jan RQ, Fan TY, Wong SL, Hwang JS, Chen JP, Chen CC, Lin HJ (2009) A trophic model of fringing coral reefs in Nanwan Bay, southern Taiwan suggests overfishing. Mar Environ Res 68:106–117. doi:10.1016/j.marenvres.2009.04.009

    Article  CAS  Google Scholar 

  • McCormick MI, Hoey AS (2004) Larval growth history determines juvenile growth and survival in a tropical marine fish. Oikos 106:225–242. doi:10.1111/j.0030-1299.2004.13131.x

    Article  Google Scholar 

  • Munday PL, Jones GP, Caley MJ (2001) Interspecific competition and coexistence in a guild of coral-dwelling fishes. Ecology 82:2177–2189

    Article  Google Scholar 

  • Nagelkerken I (2009) Evaluation of nursery function of mangroves and seagrass beds for tropical decapods and reef fishes: patterns and underlying mechanisms. In: Nagelkerken I (ed) Ecological connectivity among tropical coastal ecosystems. Springer, Netherlands, pp 357–399

    Chapter  Google Scholar 

  • Nagelkerken I, Roberts CM, van Der Velde G, Dorenbosch M, Van Riel MC, Cocheret de la Morinière E, Nienhuis PH (2002) How important are mangroves and seagrass beds for coral-reef fish? The nursery hypothesis tested on an island scale. Mar Ecol Prog Ser 244:299–305. doi: 10.3354/meps244299

    Article  Google Scholar 

  • Nagelkerken I, van der Velde G, Verberk WCEP, Dorenbosch M (2006) Segregation along multiple resource axes in a tropical seagrass fish community. Mar Ecol Prog Ser 308:79–89. doi:10.3354/meps308079

    Article  Google Scholar 

  • Nakamura Y, Sano M (2004a) Is there really lower predation risk for juvenile fishes in a seagrass bed compared with an adjacent coral area? Bull Mar Sci 74:477–482

    Google Scholar 

  • Nakamura Y, Sano M (2004b) Overlaps in habitat use of fishes between a seagrass bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan: importance of the seagrass bed as juvenile habitat. Fish Sci 70:788–803. doi:10.1007/s102280300002

    Article  CAS  Google Scholar 

  • Nakamura Y, Tsuchiya M (2008) Spatial and temporal patterns of seagrass habitat use by fishes at the Ryukyu Islands, Japan. Estuar Coast Shelf Sci 76:345–356. doi:10.1016/j.ecss.2007.07.014

    Article  Google Scholar 

  • Nakamura Y, Horinouchi M, Nakai T, Sano M (2003) Food habits of fishes in a seagrass bed on a fringing coral reef at Iriomote Island, southern Japan. Ichthyol Res 50:15–22. doi:10.1007/s102280300002

    Article  Google Scholar 

  • Nakamura Y, Shibuno T, Lecchini D, Kawamura T, Watanabe Y (2009) Spatial variability in habitat associations of pre-and post-settlement stages of coral reef fishes at Ishigaki Island, Japan. Mar Biol 156:2413–2419. doi:10.1007/s00227-009-1257-3

    Article  Google Scholar 

  • Nakamura Y, Hirota K, Shibuno T, Watanabe Y (2012) Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift. Mar Biol 159:1305–1315. doi:10.1007/s00227-012-1911-z

    Article  Google Scholar 

  • Overholtzer KL, Motta P (1999) Comparative resource use by juvenile parrotfishes in the Florida Keys. Mar Ecol Prog Ser 177:177–187. doi:10.3354/meps177177

    Article  Google Scholar 

  • Paine RT (1969) A note on trophic complexity and community stability. Am Nat 103:91–93. doi:10.1086/282586

    Article  Google Scholar 

  • Pogoreutz C, Kneer D, Litaay M, Asmus H, Ahnelt H (2012) The influence of canopy structure and tidal level on fish assemblages in tropical Southeast Asian seagrass meadows. Estuar Coast Shelf Sci 107:58–68. doi:10.1016/j.ecss.2012.04.022

    Article  Google Scholar 

  • Polis GA, Holt RD (1992) Intraguild predation: the dynamics of complex trophic interactions. Trends Ecol Evol 7:151–154. doi:10.1016/0169-5347(92)90208-S

    Article  CAS  Google Scholar 

  • Risk A (1997) Effects of habitat on the settlement and postsettlement success of the ocean surgeonfish Acanthurus bahianus. Mar Ecol Prog Ser 161:51–59. doi:10.3354/meps161051

    Article  Google Scholar 

  • Sala E, Ballesteros E (1997) Partitioning of space and food by three fish of the genus Diplodus (Sparidae) in a Mediterranean rocky infralittoral ecosystem. Mar Ecol Prog Ser 152:273–283. doi:10.3354/meps152273

    Article  Google Scholar 

  • Schmitt RJ, Holbrook SJ (1999) Settlement and recruitment of three damselfish species: larval delivery and competition for shelter space. Oecologia 118:76–86. doi:10.1007/s004420050705

    Article  CAS  Google Scholar 

  • Schmitz OJ, Krivan V, Ovadia O (2004) Trophic cascades: the primacy of trait-mediated indirect interactions. Ecol Lett 7:153–163. doi:10.1111/j.1461-0248.2003.00560.x

    Article  Google Scholar 

  • Schoener TW (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51:408–418. doi:10.2307/1935376

    Article  Google Scholar 

  • Stallings CD (2008) Indirect effects of an exploited predator on recruitment of coral-reef fishes. Ecology 89:2090–2095. doi:10.1890/07-1671.1

    Article  Google Scholar 

  • Sweatman HP (1984) A field study of the predatory behavior and feeding rate of a piscivorous coral reef fish, the lizardfish Synodus englemani. Copeia 1:187–194. doi:10.2307/1445051

    Article  Google Scholar 

  • Unsworth RKF, De León PS, Garrard SL, Smith DJ, Bell JJ (2009a) Habitat usage of the thumbprint emperor Lethrinus harak (Forsskål, 1775) in an Indo-Pacific coastal seascape. Open Mar Biol J 3:16–20. doi:10.2174/1874450800903010016

    Article  Google Scholar 

  • Unsworth RKF, Garrard SL, De León PS, Cullen LC, Smith DJ, Sloman KA, Bell JJ (2009b) Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum. Aquat Biol 5:85–95. doi:10.3354/ab00139

    Article  Google Scholar 

  • Unsworth RKF, Hinder SL, Bodger OG, Cullen-Unsworth LC (2014) Food supply depends on seagrass meadows in the coral triangle. Environ Res Lett 9:094005. doi:10.1088/1748-9326/9/9/094005

    Article  Google Scholar 

  • Wen CKC, Pratchett MS, Almany GR, Jones GP (2013) Role of prey availability in microhabitat preferences of juvenile coral trout (Plectropomus: Serranidae). J Exp Mar Biol Ecol 443:39–45. doi:10.1016/j.jembe.2013.02.027

    Article  Google Scholar 

Download references

Acknowledgments

We thank Yi-Li Chuang and Chen-Yun Lee for field assistance and Laurie Battle for proofreading the manuscript. This study was financially supported by Kenting National Park Headquarters, the National Science Council of Taiwan (Grant No. NSC101-2625-M-005-004) and the National Natural Science Foundation of China (Grant No. U1405234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsing-Juh Lin.

Additional information

Communicated by D. Goulet.

Reviewed by undisclosed experts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, CL., Lin, HJ. Ontogenetic habitat utilization patterns of juvenile reef fish in low-predation habitats. Mar Biol 162, 1799–1811 (2015). https://doi.org/10.1007/s00227-015-2712-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2712-y

Keywords

Navigation