Skip to main content

Advertisement

Log in

Moving northward: comparison of the foraging effort of Magellanic penguins from three colonies of northern Patagonia

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The Magellanic penguin Spheniscus magellanicus has recently colonized two new coastal sites (Islote Lobos and El Pedral), increasing the number of colonies in northern Patagonia, Argentina. Assuming foraging parameters during the breeding season to be valid short-term indicators of population health, we studied several foraging parameters of penguins from the two new established sites and from an older and well-established colony (Punta Norte) also localized in the north of Patagonia. Penguins from the recently formed colonies performed shorter foraging trips and visited waters closer to their colony than birds from Punta Norte, with penguins from Punta Norte spending almost twice the time at sea spent by penguins from El Pedral. Penguins from Punta Norte also spent more time underwater, spent a higher proportion of the complete diving cycle searching for prey, performed more wiggles (indicative of prey capture) and had fewer estimated prey captures per unit time underwater than penguins from Islote Lobos and El Pedral. This information suggests that, given no limitations on nest-site availability and no prevalence of predators, the good foraging conditions around El Pedral and Islote Lobos may be implicated in the increase in these two relatively new colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acha EM, Mianzan HW, Guerrero RA, Favero M, Bava J (2004) Marine fronts at the continental shelves of austral South America: physical and ecological processes. J Mar Syst 44:83–105

    Article  Google Scholar 

  • Ashmole NP (1963) The regulation of numbers of tropical oceanic birds. Ibis 103:458–473

    Google Scholar 

  • Ballance LT, Ainley DG, Ballard G, Barton K (2009) An energetic correlate between colony size and foraging effort in seabirds, an example of the Adélie penguin Pygoscelis adeliae. J Avian Biol 40:279–288

    Article  Google Scholar 

  • Bertellotti M, Tella JL, Godoy JA, Blanco G, Forero MG, Donázar JA, Ceballos O (2002) Determining sex of magellanic penguins using molecular procedures and discriminant functions. Waterbirds 25:479–484

    Article  Google Scholar 

  • Boersma PD, Rebstock GA (2009) Foraging distance affects reproductive success in Magellanic penguins. Mar Ecol Prog Ser 375:263–275

    Article  Google Scholar 

  • Boersma PD, Rebstock GA, Frere E, Moore SE (2009) Following the fish: penguins and productivity in the South Atlantic. Ecol Monogr 79(1):59–76

    Article  Google Scholar 

  • Bost C, Handrich Y, Butler P, Fahlman A, Halsey LG, Woakes A, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep Sea Res II 54:248–255

    Article  Google Scholar 

  • Brooke ML (2004) The food consumption of the word’s seabirds. Proc R Soc B (Suppl) 27:S246–S248

    Article  Google Scholar 

  • Burger AE, Shaffer SA (2008) Application of tracking and data-logging technology in research and conservation of seabirds. Auk 125:253–264

    Article  Google Scholar 

  • Calenge C (2006) The package “Adehabitat” for the R software: a tool for the analysis of space and habitat use by animals. Ecol Model 197:516–519

    Article  Google Scholar 

  • Cotté C, Park YH, Guinet C, Bost CA (2007) Movements of foraging king penguins through marine mesoscale eddies. Proc Biol Sci 274:2385–2391

    Article  Google Scholar 

  • Crawley MJ (2007) The R book. Wiley, West Sussex, England

    Book  Google Scholar 

  • Degrati M (2011) Patrón de actividad y estrategias de alimentación del delfín oscuro (Lagenorhynchus obscurus) en el norte de Patagonia. Doctoral thesis. Universidad Nacional del Comahue, Río Negro

  • Fauchald P, Erikstad KE (2002) Scale-dependent predator-prey interactions: the aggregative response of seabirds to prey under variable prey abundance and patchiness. Mar Ecol Prog Ser 231:279–291

    Article  Google Scholar 

  • Fauchald P, Tveraa T (2003) Using first-passage time in the analysis of area-restricted search and habitat selection. Ecology 84:282–288

    Article  Google Scholar 

  • Gandini PA, Frere E, Holik TM (1992) Implicancias de las diferencias en el tamaño corporal entre colonias para el uso de medidas morfométricas como métodos de sexado en Spheniscus magellanicus. Hornero 13:211–213

    Google Scholar 

  • Gaston AJ (2004) Seabirds: a natural history. T. & A.D. Poyser, London, UK, p 222

    Google Scholar 

  • Gaston AJ, Ydenberg RC, Smith GEJ (2007) Ashmole´s halo and population regulation in seabirds. Mar Ornithol 35:119–126

    Google Scholar 

  • Grémillet D, Pichegru L, Siorat F, Georges JY (2006) Conservation implications of the apparent mismatch between population dynamics and foraging effort in French northern gannets from the English Channel. Mar Ecol Prog Ser 319:15–25

    Article  Google Scholar 

  • Hamer KC, Lewis S, Wanless S, Phillips RA, Sherrat TN, Humphreys EM, Hennicke J, Garthe S (2006) Use of gannets to monitor prey availability in the northeast Atlantic Ocean: colony size, diet and foraging behaviour. In: Boyd IL, Wanless S, Camphuysen CJ (eds) Top predators in marine ecosystems, their role in monitoring and management. Cambridge University Press, Cambridge, pp 191–210

    Google Scholar 

  • Hanuise N, Bost CA, Huin W, Auber A, Halsey LG, Handrich Y (2010) Measuring foraging activity in a deep-diving bird: comparing wiggles, oesophageal temperatures and beak-opening angles as proxies of feeding. J Exp Biol 213:3874–3880

    Article  Google Scholar 

  • Harding AMA, Piatt JF, Schmutz JA, Shultz MT, van Pelt TI, Kettle AB, Speckman SG (2007) Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge). Ecology 88:2024–2033

    Article  Google Scholar 

  • Hunt GL (1990) The pelagic distribution of marine birds in a heterogeneous environment. Polar Res 8:43–54

    Article  Google Scholar 

  • Jodice PGR, Rody DD, Turco KR, Suryan RM, Irons DB, Piatt JF, Shultz MT, Roseneau DG, Kettle AB, Anthony JA (2006) Assessing the nutritional stress hypothesis: relative influence of diet quantity and quality on seabird productivity. Mar Ecol Prog Ser 325:267–279

    Article  Google Scholar 

  • Kramer DL (1988) The behaviour ecology of air breathing by aquatic animals. Can J Zool 66:89–94

    Article  Google Scholar 

  • Lewis S, Sherratt TN, Hamer KC, Wanless S (2001) Evidence of intra-specific competition for food in a pelagic seabird. Nature 412:816–819

    Article  CAS  Google Scholar 

  • Lewis S, Gremillet D, Daunt F, Ryan PG, Crawford RJM, Wanless S (2006) Using behavioural and state variables to identify proximate causes of population change in a seabird. Oecologia 147:606–614

    Article  Google Scholar 

  • McNair JM (1982) Optimal giving-up time and the marginal value theorem. Am Naturalist 119:511–529

    Article  Google Scholar 

  • Mori Y (1998a) Optimal choice of foraging depth in divers. J Zool 245:279–283

    Article  Google Scholar 

  • Mori Y (1998b) The optimal patch use in divers: optimal time budget and the number of dive cycles during bout. J Theor Biol 190:187–199

    Article  Google Scholar 

  • Mori Y (1999) The optimal allocation of time and respiratory metabolism over the dive cycle. Behav Ecol 10:155–160

    Article  Google Scholar 

  • Ocampo-Reinaldo M, González R, Williams G, Storero LP, Romero MA, Narvarte M, Gagliardini DA (2013) Spatial patterns of the Argentine hake Merluccius hubbsi and oceanographic processes in a semi-enclosed Patagonian ecosystem. Mar Biol Res 9(4):394–406

    Article  Google Scholar 

  • Orians GH, Pearson NE (1979) On the theory of central place foraging. In: Horn DJ, Mitchell RD, Stairs GR (eds) Analysis of ecological systems. Ohio State University Press, Columbus, pp 154–177

    Google Scholar 

  • Petersen SL, Ryan PG, Gremillet D (2006) Is food availability limiting African Penguins Spheniscus demersus at Boulders? A comparison of foraging effort at mainland and island colonies. Ibis 148:14–26

    Article  Google Scholar 

  • Piola AR, Scasso LM (1988) Circulación en el Golfo San Matías. Geoacta 15(1):33–51

    Google Scholar 

  • Pisoni JP, Rivas A, Piola AR (2014) Satellite remote sensing reveals coastal upwelling events in the San Matías Gulf- Northern Patagonia. Remote Sens Environ 152:270–278

    Article  Google Scholar 

  • Pozzi LM, Garcìa Borboroglu P, Boersma PD, Pascual MA (2015) Building a Metapopulation perspective for the Magellanic Penguin in Argentina. PLoS ONE. doi:10.1371/journal.pone.0119002

    Google Scholar 

  • Pyke GH (1984) Optimal foraging theory: a critical review. Annu Rev Ecol Evol S 15:523–575

    Article  Google Scholar 

  • R Development Core Team I (2011) R: A language and environment for statistical computing. In R Foundation for Statistical Computing. Vienna, Austria: ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Raya Ray A, Pütz K, Scioscia G, Lüthi B, Schiavini A (2012) Sexual differences in the foraging behaviour of Magellanic Penguins related to stage of breeding. Emu 112:90–96

    Article  Google Scholar 

  • Raya Rey A, Bost CA, Schiavini A, Pütz C (2010) Foraging movements of Magellanic Penguins Spheniscus magellanicus in the Beagle Channel, Argentina, related to tide and tidal currents. J Ornithol 151:933–943

    Article  Google Scholar 

  • Ropert-Coudert Y, Kato A, Baudat J, Bost CA, Le Maho Y, Naito Y (2001) Time/depth usage of Adélie penguins: an approach based on dive angles. Polar Biol 24:467–470

    Article  Google Scholar 

  • Ropert-Coudert Y, Wilson RP, Daunt F, Kato A (2004) Patterns of energy acquisition by a central place forager: benefits of alternating short and long foraging trips. Behav Ecol 15:824–830

    Article  Google Scholar 

  • Sala JE, Wilson RP, Frere E, Quintana F (2012a) Foraging effort in Magellanic penguins in coastal Patagonia, Argentina. Mar Ecol Prog Ser 464:273–287

    Article  Google Scholar 

  • Sala JE, Wilson RP, Quintana F (2012b) How much is too much? Assessment of prey consumption by Magellanic penguins in Patagonian colonies. PLoS ONE 7

  • Sala JE, Wilson RP, Quintana F (2014a) Foraging effort in Magellanic penguins: balancing the energy books for survival? Mar Biol. doi:10.1007/s00227-014-2581-9

    Google Scholar 

  • Sala JE, Wilson RP, Frere E, Quintana F (2014b) Flexible foraging for finding fish: variable diving patterns in Magellanic Penguins Spheniscus magellanicus from different colonies. J Ornithol. doi:10.1007/s10336-014-1065-5

    Google Scholar 

  • Schiavini A, Yorio P, Gandini P, Raya Rey A, Boersma PD (2005) Los pingüinos de las costas argentinas: estado poblacional y conservacion. Hornero 20:5–23

    Google Scholar 

  • Scolaro JA, Wilson RP, Laurenti S, Kierspel M, Gallelli H, Upton J (1999) Feeding preferences of the magellanic penguin over its breeding range in Argentina. Waterbirds 22:104–110

    Article  Google Scholar 

  • Simeone A, Wilson RP (2003) In-depth studies of Magellanic penguin (Spheniscus magellanicus) foraging: can we estimate consumption by perturbations in the dive profile? Mar Biol 143:825–831

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life history. Oxford University Press, New York, USA

    Google Scholar 

  • Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Tonini MH, Palma ED, Piola AR (2013) A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Cont Shelf Res 65:97–110

    Article  Google Scholar 

  • Tremblay Y, Cherel Y (2000) Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. Mar Ecol Prog Ser 204: 257–267

    Article  Google Scholar 

  • Weimerskirch H, Pinaud D, Pawlowski F, Bost CA (2007) Does prey capture induce area restricted search? A fine-scale study using GPS in a marine predator, the Wandering Albatross. Am Nat 170:734–743

    Article  Google Scholar 

  • Williams TD (1995) The penguins. Oxford University Press, Oxford

    Google Scholar 

  • Wilson RP (1995) The foraging ecology of penguins. In: Williams TD (ed) The penguins. Oxford University Press, Oxford, pp 81–106

  • Wilson RP (2003) Penguins predict their performance. Mar Ecol Prog Ser 249:305–310

    Article  Google Scholar 

  • Wilson RP, Wilson MP (1995) The foraging behaviour of the African penguins. In: Dann P, Norman I, Reilly P (eds) The Penguins: ecology and management. Surrey Beatty & Sons, Sydney, pp 244–265

    Google Scholar 

  • Wilson RP, Culik BM, Peters G, Bannasch R (1996) Diving behaviour of Gentoo penguins, Pygoscelis papua; factors keeping dive profiles in shape. Mar Biol 126:153–162

    Article  Google Scholar 

  • Wilson RP, Putz K, Charrassin JB, Lage J (1997) Long-term attachment of transmitting and recording devices to penguins and other seabirds. Wildl Soc Bull 25:101–106

    Google Scholar 

  • Wilson RP, Scolaro JA, Gremillet D, Kierspel MAM et al (2005) How do Magellanic penguins cope with variability in their access to prey. Ecol Monogr 75:379–401

    Article  Google Scholar 

  • Wilson RW, Jackson S, Thor Straten M (2007) Rates of food consumption in free-living magellanic penguins Spheniscus magellanicus. Mar Ornithol 35:109–111

    Google Scholar 

  • Wilson R, Shepard ELC, Gómez Laich A, Frere E, Quintana F (2010) Pedalling downhill and freewheeling up; a penguin perspective on foraging. Aquatic Biol 8:193–202

    Article  Google Scholar 

  • Wilson RP, McMahon CR, Quintana F, Frere E, Scolaro A, Hays GC, Bradshaw C (2011) N-dimensional animal energetic niches clarify behavioural options in a variable marine environment. J Exp Biol 214:646–656

    Article  Google Scholar 

  • Worton BJ (1989) Kernel methods for estimating the utilization in home-range studies. Ecology 70:164–168

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the Wildlife Conservation Society, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET) and Agencia de Promoción Científica y Tecnológica to F. Quintana and by a Rolex Award for Enterprise awarded to R. P. Wilson. We would like to thank the Conservation Agencies of Chubut and Río Negro for the permits to work in the different protected areas and the Centro Nacional Patagónico (CENPAT-CONICET) for institutional and logistical support. A. We also thank Javier Ciancio and Juan Pablo Pisoni for their valuable help, Patricia Dell´Arciprete for her technical assistance and two anonymous reviewers for their valuable comments on an earlier version of the manuscript. During the development of the present study, A. Gómez-Laich was supported by a postdoctoral fellowship from the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustina Gómez-Laich.

Additional information

Communicated by S. Garthe.

Reviewed by M. Berlincourt and an undisclosed expert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Laich, A., Wilson, R.P., Sala, J.E. et al. Moving northward: comparison of the foraging effort of Magellanic penguins from three colonies of northern Patagonia. Mar Biol 162, 1451–1461 (2015). https://doi.org/10.1007/s00227-015-2681-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2681-1

Keywords

Navigation