Marine Biology

, Volume 162, Issue 4, pp 773–781 | Cite as

Wide-ranging phylogeographic structure of invasive red lionfish in the Western Atlantic and Greater Caribbean

  • John S. S. Butterfield
  • Edgardo Díaz-Ferguson
  • Brian R. Silliman
  • Jonathan W. Saunders
  • Dayne Buddo
  • Antonio A. Mignucci-Giannoni
  • Linda Searle
  • Aarin C. Allen
  • Margaret E. Hunter
Original Paper

Abstract

The red lionfish (Pterois volitans) is an invasive predatory marine fish that has rapidly expanded its presence in the Western Hemisphere. We collected 214 invasive red lionfish samples from nine countries and territories, including seven unpublished locations. To more comprehensively evaluate connectivity, we compiled our d-loop sequence data with 846 published sequences, resulting in 1,060 samples from 14 locations. We found low nucleotide diversity (π = 0.003) and moderate haplotype diversity (h = 0.59). Using haplotype population pairwise ΦST tests, we analyzed possible phylogeographic breaks that were previously proposed based on other reef organisms. We found support for the Bahamas/Turks/Caicos versus Caribbean break (ΦST = 0.12) but not for the Northwestern Caribbean, Eastern Caribbean, or US East Coast versus Bahamas breaks. The Northern Region had higher variation and more haplotypes, supporting introductions of at least five haplotypes to the region. Our wide-ranging samples showed that a lower-frequency haplotype in the Northern Region dominated the Southern Region and suggested multiple introductions, possibly to the south. We tested multiple scenarios of phylogeographic structure with analyses of molecular variance and found support for a Northern and Southern Region split at the Bahamas/Turks/Caicos versus Caribbean break (percentage of variation among regions = 8.49 %). We found that Puerto Rico clustered with the Southern Region more strongly than with the Northern Region, as opposed to previous reports. We also found the rare haplotype H03 for the first time in the southern Caribbean (Panama), indicating that either secondary releases occurred or that the low-frequency haplotypes have had time to disperse to extreme southern Caribbean locations.

References

  1. Ahrenholz DW, Morris JA (2010) Larval duration of the lionfish, Pterois volitans along the Bahamian Archipelago. Mar Biol 88:305–309. doi:10.1007/s10641-010-9647-4 Google Scholar
  2. Albins MA, Hixon MA (2008) Invasive Indo-Pacific lionfish Pterois volitans reduce recruitment of Atlantic coral-reef fishes. Mar Ecol Prog Ser 367:233–238. doi:10.3354/meps07620 CrossRefGoogle Scholar
  3. Barson NJ, Cable J, Van Oosterhout C (2009) Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. J Evol Biol 22:485–497. doi:10.1111/j.1420-9101.2008.01675.x CrossRefGoogle Scholar
  4. Baums IB, Miller MW, Hellberg ME (2005) Regionally isolated populations of an imperiled Caribbean coral, Acropora palmata. Mol Ecol 14:1377–1390. doi:10.1111/j.1365-294X.2005.02489.x CrossRefGoogle Scholar
  5. Betancur-R R, Acero PA, Duque-Caro H, Santos SR (2010) Phylogenetic and morphologic analyses of a coastal fish reveals a marine biogeographic break of terrestrial origin in the southern Caribbean. PLoS ONE 5:e11566. doi:10.1371/journal.pone.0011566 CrossRefGoogle Scholar
  6. Betancur-R R, Hines A, Acero AP, Ortí G, Wilbur AE, Freshwater DW (2011) Reconstructing the lionfish invasion: insights into Greater Caribbean biogeography. J Biogeogr 38:1281–1293. doi:10.1111/j.1365-2699.2011.02496.x CrossRefGoogle Scholar
  7. Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527. doi:10.1126/science.1122039 CrossRefGoogle Scholar
  8. Da Silva A, Luikart G, Yoccoz NG, Cohas A, Allainé D (2005) Genetic diversity-fitness correlation revealed by microsatellite analyses in European alpine marmots (Marmota marmota). Conserv Genet 7:371–382. doi:10.1007/s10592-005-9048-y CrossRefGoogle Scholar
  9. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. doi:10.1038/nmeth.2109 CrossRefGoogle Scholar
  10. De León R, Vane K, Bertuol P, Chamberland V, Simal F, Imms E, Vermeij M (2013) Effectiveness of lionfish removal efforts in the southern Caribbean. Endanger Species Res 22:175–182. doi:10.3354/esr00542 CrossRefGoogle Scholar
  11. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x CrossRefGoogle Scholar
  12. Freshwater WD, Hines A, Parham S, Wilbur A, Sabaoun M, Woodhead J, Paris CB (2009) Mitochondrial control region sequence analyses indicate dispersal from the US East Coast as the source of the invasive Indo-Pacific lionfish Pterois volitans in the Bahamas. Mar Biol 156:1213–1221. doi:10.1007/s00227-009-1163-8 CrossRefGoogle Scholar
  13. Green SJ, Dulvy NK, Brooks AML, Akins JL, Cooper AB, Miller S, Côté IM (2014) Linking removal targets to the ecological effects of invaders: a predictive model and field test. Ecol Appl 24:1311–1322. doi:10.1890/13-0979.1 CrossRefGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520 CrossRefGoogle Scholar
  15. Hamner RM, Freshwater DW, Whitfield PE (2007) Mitochondrial cytochrome b analysis reveals two invasive lionfish species with strong founder effects in the western Atlantic. J Fish Biol 71:214–222. doi:10.1111/j.1095-8649.2007.01575.x CrossRefGoogle Scholar
  16. Hare JA, Churchill JH, Cowen RK, Berger TJ, Cornillon PC, Dragos P, Glenn SM, Govoni JJ, Lee TN (2002) Routes and rates of larval fish transport from the southeast to the northeast United States continental shelf. Limnol Oceanogr 47:1774–1789CrossRefGoogle Scholar
  17. Johannesson K, André C (2006) INVITED REVIEW: life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol 15:2013–2029. doi:10.1111/j.1365-294X.2006.02919.x CrossRefGoogle Scholar
  18. Jud ZR, Layman CA (2012) Site fidelity and movement patterns of invasive lionfish, Pterois spp., in a Florida estuary. J Exp Mar Biol Ecol 414–415:69–74. doi:10.1016/j.jembe.2012.01.015 CrossRefGoogle Scholar
  19. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241. doi:10.1111/j.1461-0248.2004.00684.x CrossRefGoogle Scholar
  20. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187 CrossRefGoogle Scholar
  21. Morris JA (2009) The biology and ecology of invasive Indo-Pacific lionfish. Dissertation, Noth Carolina State University, Raleigh, NCGoogle Scholar
  22. Morris JA, Akins JL (2009) Feeding ecology of invasive lionfish (Pterois volitans) in the Bahamian archipelago. Environ Biol Fish 86:389–398. doi:10.1007/s10641-009-9538-8 CrossRefGoogle Scholar
  23. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237. doi:10.1046/j.1523-1739.2003.01236.x CrossRefGoogle Scholar
  24. Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464. doi:10.1016/j.tree.2007.07.002 CrossRefGoogle Scholar
  25. Salas E, Molina-Urena H, Walter RP, Heath DD (2010) Local and regional genetic connectivity in a Caribbean coral reef fish. Mar Biol 157:437–445. doi:10.1007/s00227-009-1330-y CrossRefGoogle Scholar
  26. Schofield P (2009) Geographic extent and chronology of the invasion of non-native lionfish (Pterois volitans [Linnaeus 1758] and P. miles [Bennett 1828]) in the Western North Atlantic and Caribbean Sea. Aquat Invasions 4:473–479. doi:10.3391/ai.2009.4.3.5 CrossRefGoogle Scholar
  27. Schultz ET (1986) Pterois volitans and Pterois miles: two valid species Pterois volitans and Pterois miles: two valid species. Copeia 1986:686–690. doi:10.2307/1444950 CrossRefGoogle Scholar
  28. Schultz ET, Cowen RK (1994) Recruitment of coral-reef fishes to Bermuda—local retention or long-distance transport. Mar Ecol Prog Ser 235:15–28CrossRefGoogle Scholar
  29. Schultz TF, Fitzpatrick CK, Freshwater DW, Morris JA (2013) Characterization of 18 polymorphic microsatellite loci from invasive lionfish (Pterois volitans and P. miles). Conserv Genet Res 5:599–601. doi:10.1007/s12686-013-9860-5 CrossRefGoogle Scholar
  30. Taylor MS, Hellberg ME (2003) Genetic evidence for local retention of pelagic larvae in a Caribbean reef fish. Science 299:107–109CrossRefGoogle Scholar
  31. Taylor MS, Hellberg ME (2006) Comparative phylogeography in a genus of coral reef fishes: biogeographic and genetic concordance in the Caribbean. Mol Ecol 15:695–707. doi:10.1111/j.1365-294X.2006.02820.x CrossRefGoogle Scholar
  32. Toledo-Hernández C, Vélez-Zuazo X, Ruiz-Diaz CP, Patricio AR, Mège P, Navarro M, Sabat AM, Betancur-R R, Papa R (2014) Population ecology and genetics of the invasive lionfish in Puerto Rico. Aquat Invasions 9:227–237. doi:10.3391/ai.2014.9.2.12 CrossRefGoogle Scholar
  33. Whitfield PE, Gardner T, Vives SP, Gilligan MR, Courtenay WR, Ray GC, Hare JA (2002) Biological invasion of the Indo-Pacific lionfish Pterois volitans along the Atlantic coast of North America. Mar Ecol Prog Ser 235:289–297CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg (outside the USA) 2015

Authors and Affiliations

  • John S. S. Butterfield
    • 1
  • Edgardo Díaz-Ferguson
    • 2
  • Brian R. Silliman
    • 3
  • Jonathan W. Saunders
    • 4
  • Dayne Buddo
    • 5
  • Antonio A. Mignucci-Giannoni
    • 6
  • Linda Searle
    • 7
  • Aarin C. Allen
    • 1
  • Margaret E. Hunter
    • 1
  1. 1.U.S. Geological SurveySoutheast Ecological Science CenterGainesvilleUSA
  2. 2.U.S. Fish and Wildlife Service, Conservation Genetics LaboratoryWarm SpringsUSA
  3. 3.Department of Marine Ecology and ConservationDuke UniversityBeaufortUSA
  4. 4.Horticultural SciencesUniversity of FloridaGainesvilleUSA
  5. 5.Centre for Marine SciencesUniversity of the West IndiesDiscovery BayJamaica
  6. 6.Centro de Conservación de Manatíes de Puerto RicoUniversidad Interamericana de Puerto RicoBayamónUSA
  7. 7.ECOMARBelize CityBelize

Personalised recommendations