Marine Biology

, Volume 162, Issue 3, pp 725–732 | Cite as

Microplastic ingestion by scleractinian corals

  • N. M. HallEmail author
  • K. L. E. Berry
  • L. Rintoul
  • M. O. Hoogenboom
Short note


We report for the first time the ingestion of microplastics by scleractinian corals, and the presence of microplastics in coral reef waters adjacent to inshore reefs on Australia’s Great Barrier Reef (GRE, 18°31′S 146°23′E). Analysis of samples from sub-surface plankton tows conducted in close proximity to inshore reefs on the central GBR revealed microplastics, similar to those used in marine paints and fishing floats, were present in low concentrations at all water sampling locations. Experimental feeding trials revealed that corals mistake microplastics for prey and can consume up to ~50 μg plastic cm−2 h−1, rates similar to their consumption of plankton and Artemia nauplii in experimental feeding assays. Ingested microplastics were found wrapped in mesenterial tissue within the coral gut cavity, suggesting that ingestion of high concentrations of microplastic debris could potentially impair the health of corals.


Coral Reef Great Barrier Reef Scleractinian Coral Plastic Particle Plastic Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62:1596–1605. doi: 10.1016/j.marpolbul.2011.05.030 CrossRefGoogle Scholar
  2. Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106. doi: 10.1016/s0022-0981(98)00099-9 CrossRefGoogle Scholar
  3. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253. doi: 10.1016/s0022-0981(00)00237-9 CrossRefGoogle Scholar
  4. Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60:2050–2055. doi: 10.1016/j.marpolbul.2010.07.014 CrossRefGoogle Scholar
  5. Besseling E, Wang B, Lürling M, Koelmans AA (2014) Nanoplastic affects growth of S. obliquus and reproduction of D. magna. Environ Sci Technol 48:12336–12343. doi: 10.1021/es503001d CrossRefGoogle Scholar
  6. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC (2008) Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ Sci Technol 42:5026–5031. doi: 10.1021/es800249a CrossRefGoogle Scholar
  7. Browne MA, Crump P, Niven SJ, Teuten E, Tonkin A, Galloway T, Thompson R (2011) Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45:9175–9179. doi: 10.1021/es201811s CrossRefGoogle Scholar
  8. Budd AF, Fukami H, Smith ND, Knowlton N (2012) Taxonomic classification of the reef coral family Mussidae (Cnidaria: Anthozoa: Scleractinia). Zool J Linn Soc 166:465–529. doi: 10.1111/j.1096-3642.2012.00855.x CrossRefGoogle Scholar
  9. Carpenter EJ, Smith JKL (1972) Plastics on the Sargasso sea surface. Science 175:1240–1241. doi: 10.1126/science.175.4027.1240 CrossRefGoogle Scholar
  10. Claessens M, De Meester S, Van Landuyt L, De Clerck K, Janssen CR (2011) Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Mar Pollut Bull 62:2199–2204. doi: 10.1016/j.marpolbul.2011.06.030 CrossRefGoogle Scholar
  11. Cole M, Lindeque P, Fileman E, Halsband C, Goodhead R, Moger J, Galloway TS (2013) Microplastic ingestion by zooplankton. Environ Sci Technol 47:6646. doi: 10.1021/es400663f Google Scholar
  12. Endo S et al (2005) Concentration of polychlorinated biphenyls (PCBs) in beached resin pellets: variability among individual particles and regional differences. Mar Pollut Bull 50:1103–1114. doi: 10.1016/j.marpolbul.2005.04.030 CrossRefGoogle Scholar
  13. Eriksen M et al (2013) Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull 68:71. doi: 10.1016/j.marpolbul.2012.12.021 CrossRefGoogle Scholar
  14. Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58:1225–1228. doi: 10.1016/j.marpolbul.2009.04.025 CrossRefGoogle Scholar
  15. Ferrier-Pagès C, Witting J, Tambutté E, Sebens KP (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240. doi: 10.1007/s00338-003-0312-7 CrossRefGoogle Scholar
  16. Ferrier-Pagès C, Hoogenboom M, Houlbrèque F (2011) The role of plankton in coral trophodynamics. In Springer Netherlands, Dordrecht doi: 10.1007/978-94-007-0114-4_15
  17. Goldberg WM (2002) Gastrodermal structure and feeding responses in the scleractinian Mycetophyllia reesi, a coral with novel digestive filaments. Tissue Cell 34:246–261. doi: 10.1016/s0040-8166(02)00008-3 CrossRefGoogle Scholar
  18. Gregory MR (1996) Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Mar Pollut Bullet 32:867–871. doi: 10.1016/s0025-326x(96)00047-1 CrossRefGoogle Scholar
  19. Gregory MR (1999) Plastics and South Pacific Island shores: environmental implications. Ocean Coast Manag 42:603–615. doi: 10.1016/s0964-5691(99)00036-8 CrossRefGoogle Scholar
  20. Hardesty BD, Wilcox C (2011) Understanding the types, sources and at-sea distribution of marine debris in Australian watersGoogle Scholar
  21. Hidalgo-Ruz V, Gutow L, Thompson RC, Thiel M (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46:3060–3075. doi: 10.1021/es2031505 CrossRefGoogle Scholar
  22. Houlbreque F, Ferrier-Pages C (2009) Heterotrophy in tropical scleractinian corals. Biol Rev. doi: 10.1111/j.1469-185X.2008.00058.x Google Scholar
  23. Houlbreque F, Delesalle B, Blanchot J, Montel Y, Ferrier-Pages C (2006) Picoplankton removal by the coral reef community of La Prevoyante, Mayotte Island. Aquat Microb Ecol 44:59–70. doi: 10.3354/ame044059 CrossRefGoogle Scholar
  24. Ivar do Sul JA, Costa MF (2014) The present and future of microplastic pollution in the marine environment. Environ Pollut 185:352. doi: 10.1016/j.envpol.2013.10.036 CrossRefGoogle Scholar
  25. Kaposi KL, Mos B, Kelaher BP, Dworjanyn SA (2014) Ingestion of microplastic has limited impact on a marine larva. Environ Sci Technol 48:1638. doi: 10.1021/es404295e CrossRefGoogle Scholar
  26. Koelmans AA, Besseling E, Foekema EM (2014) Leaching of plastic additives to marine organisms. Environ Pollut 187:49–54. doi: 10.1016/j.envpol.2013.12.013 CrossRefGoogle Scholar
  27. Laist DW (1987) Overview of the biological effects of lost and discarded plastic debris in the marine environment. Mar Pollut Bull 18:319–326. doi: 10.1016/s0025-326x(87)80019-x CrossRefGoogle Scholar
  28. Lewis JB, Price WS (1975) Feeding mechanisms and feeding strategies of Atlantic reef corals. J Zool 176:527–544. doi: 10.1111/j.1469-7998.1975.tb03219.x CrossRefGoogle Scholar
  29. Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263. doi: 10.2307/1933661 CrossRefGoogle Scholar
  30. Mato Y, Isobe T, Takada H, Kanehiro H, Ohtake C, Kaminuma T (2001) Plastic resin pellets as a transport medium for toxic chemicals in the marine environment. Environ Sci Technol 35:318–324. doi: 10.1021/es0010498 CrossRefGoogle Scholar
  31. Mills MM, Lipschultz F, Sebens KP (2004) Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs 23:311–323. doi: 10.1007/s00338-004-0380-3 CrossRefGoogle Scholar
  32. Moore CJ (2008) Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res 108:131–139. doi: 10.1016/j.envres.2008.07.025 CrossRefGoogle Scholar
  33. Murdock GR (1978) Digestion, assimilation, and transport of food in the gastrovascular cavity of a gorgonian octocoral (Cnidaria; Anthozoa). Bull Mar Sci 28:354–362Google Scholar
  34. Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89. doi: 10.3354/meps300079 CrossRefGoogle Scholar
  35. Palardy JE, Rodrigues LJ, Grottoli AG (2008) The importance of zooplankton to the daily metabolic carbon requirements of healthy and bleached corals at two depths. J Exp Mar Biol Ecol 367:180–188. doi: 10.1016/j.jembe.2008.09.015 CrossRefGoogle Scholar
  36. Reisser J, Shaw J, Wilcox C, Hardesty BD, Proietti M, Thums M, Pattiaratchi C (2013) Marine plastic pollution in waters around australia: characteristics, concentrations, and pathways. PLoS One. doi: 10.1371/journal.pone.0080466 Google Scholar
  37. Rios LM, Moore C, Jones PR (2007) Persistent organic pollutants carried by synthetic polymers in the ocean environment. Mar Pollut Bull 54:1230–1237. doi: 10.1016/j.marpolbul.2007.03.022 CrossRefGoogle Scholar
  38. Sano M, Shimizu M, Nose Y (1987) Long-term effects of destruction of hermatypic corals by Acanthaster planci infestation on reef fish communities at Iriomote Island, Japan. Mar Ecol Prog Ser 37:191–199. doi: 10.3354/meps037191 CrossRefGoogle Scholar
  39. Stella JS, Pratchett MS, Hutchings PA, Jones GP (2011) Coral-associated invertebrates: diversity, ecology importance and vulnerability to disturbance. Oceanogr Mar Biol. doi: 10.1201/b11009-3 Google Scholar
  40. Tanaka K, Takada H, Yamashita R, Mizukawa K, MA Fukuwaka, Watanuki Y (2013) Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine plastics. Mar Pollut Bull 69:219. doi: 10.1016/j.marpolbul.2012.12.010 CrossRefGoogle Scholar
  41. Teuten EL, Rowland SJ, Galloway TS, Thompson RC (2007) Potential for plastics to transport hydrophobic contaminants. Environ Sci Technol 41:7759. doi: 10.1021/es071737s CrossRefGoogle Scholar
  42. Teuten EL et al (2009) Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc Lond B 364:2027–2045. doi: 10.1098/rstb.2008.0284 CrossRefGoogle Scholar
  43. Thompson RC et al (2004) Lost at sea: where is all the plastic? Science 304:838. doi: 10.1126/science.1094559 CrossRefGoogle Scholar
  44. Titlyanov EA, Titlyanova TV, Leletkin VA, Tsukahara J, Van Woesik R, Yamazato K (1996) Degradation of zooxanthellae and regulation of their density in hermatypic corals. Mar Ecol Prog Ser 139:167–178. doi: 10.3354/meps139167 CrossRefGoogle Scholar
  45. von Moos N, Burkhardt-Holm P, Köhler A (2012) Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environ Sci Technol 46:11327–11335. doi: 10.1021/es302332w CrossRefGoogle Scholar
  46. Zitko V, Hanlon M (1991) Another source of pollution by plastics: skin cleaners with plastic scrubbers. Mar Pollut Bull 22:41–42. doi: 10.1016/0025-326x(91)90444-w CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • N. M. Hall
    • 1
    Email author
  • K. L. E. Berry
    • 1
    • 2
  • L. Rintoul
    • 3
  • M. O. Hoogenboom
    • 1
    • 4
  1. 1.College of Marine and Environmental ScienceJames Cook UniversityTownsvilleAustralia
  2. 2.Catchment to Reef Research Group, Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER)James Cook UniversityTownsvilleAustralia
  3. 3.School of Chemistry, Physics and Mechanical EngineeringQueensland University of TechnologyBrisbaneAustralia
  4. 4.ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleAustralia

Personalised recommendations