Skip to main content

Advertisement

Log in

Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals

  • Short note
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

It is widely acknowledged that temperature stress affects an organism’s sensitivity to ocean acidification and vice versa, yet it is not clear how the two are mechanistically linked. Here, we induced thermal stress in two coral species with differing bleaching susceptibilities to measure how a reduction in photosynthetic performance impacts intracellular pH (pHi) regulation in the symbiotic dinoflagellates (Symbiodinium sp.) and their host coral cells. Our hypothesis was that thermally induced photosynthetic dysfunction in the symbiont would prevent the efficient removal of additional CO2, lowering its buffering capacity and thus increasing the host cell’s susceptibility to intracellular acidosis. To test this, we exposed Pocillopora damicornis (a thermally sensitive coral) and Montipora capitata (a thermally resilient coral) to four different temperature treatments (23.8, 25.5, 28 and 31 °C) for 1 week. We then isolated intact symbiotic coral endodermal cells, placed them in a live-cell chamber attached to a confocal microscope and bathed them in CO2-acidified seawater (~pH 7.6) for 30 min, before measuring the light-adapted pHi of both the host cell and its symbiont. Cells isolated from P. damicornis were more prone to cellular acidosis (declines in pHi of 11 and 8 % in host and symbiont, respectively, at 31 °C relative to 23.8 °C) than cells isolated from M. capitata (5 and 4 %, respectively). These results highlight the important role of Symbiodinium productivity (in addition to a range of physico-chemical factors such as skeletal morphology and tissue pigmentation) in determining the sensitivity of corals to rising sea surface temperatures and ocean acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Anlauf H, D’Croz L, O’Dea A (2011) A corrosive concoction: the combined effects of ocean warming and acidification on the early growth of a stony coral are multiplicative. J Exp Mar Biol Ecol 397:13–20. doi:10.1016/j.jembe.2010.11.009

    Article  Google Scholar 

  • Baird A, Bhagooli R, Ralph P, Takahashi S (2009) Coral bleaching: the role of the host. Trends Ecol Evol 24:16–20. doi:10.1016/j.tree.2008.09.005

    Article  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst 34:661–689. doi:10.1146/132417

    Article  Google Scholar 

  • Bell JJ, Davy SK, Jones T, Taylor MW, Webster NS (2013) Could some coral reefs become sponge reefs as our climate changes? Glob Change Biol 19:2613–2624. doi:10.1111/gcb.12212

    Article  Google Scholar 

  • Carpenter KE, Abrar M, Aeby G, Aronson RB, Banks S, Bruckner A, Chiriboga A, Cortés J, Delbeek JC, Devantier L, Edgar GJ, Edwards AJ, Fenner D, Guzmán HM, Hoeksema BW, Hodgson G, Johan O, Licuanan WY, Livingstone SR, Lovell ER, Moore JA, Obura DO, Ochavillo D, Polidoro BA, Precht WF, Quibilan MC, Reboton C, Richards ZT, Rogers AD, Sanciangco J, Sheppard A, Sheppard C, Smith K, Stuart S, Turak E, Veron JE, Wallace C, Weil Em Wood E (2008) One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science 321:560–563. doi:10.1126/science.1159196

    Article  CAS  Google Scholar 

  • Casey JR, Grinstein S, Orlowski J (2010) Sensors and regulators of intracellular pH. Nat Rev Mol Cell Bio 11:50–61. doi:10.1038/nrm2820

    Article  CAS  Google Scholar 

  • Davy SK, Allemand D, Weis VM (2012) Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol Mol Biol Rev 76:229–261. doi:10.1128/mmbr.05014-11

    Article  CAS  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication, vol 3, p 191

  • Fisher P, Malme M, Dove S (2012) The effect of temperature stress on coral-Symbiodinium associations containing distinct symbiont types. Coral Reefs 31:473–485. doi:10.1007/s00338-011-0853-0

    Article  Google Scholar 

  • Fitt W, Brown B, Warner M, Dunne R (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65. doi:10.1007/s003380100146

    Article  Google Scholar 

  • Gibbin EM, Putnam HM, Davy SK, Gates RD (2014) Intracellular pH and its response to CO2-driven seawater acidification in symbiotic versus non-symbiotic coral cells. J Exp Biol 217:1963–1969. doi:10.1242/jeb.099549

    Article  CAS  Google Scholar 

  • IPCC (2014) Summary for policymakers. In: Climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of the working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1–32

  • Jeffrey S, Humphrey G (1975) New spectrophotometry equations for determining chlorophyll a, chlorophyll b, chlorophyll c-1 and chlorophyll c-2 in higher plants, algae and natural phytoplankton. Biochimie Physiol Pflanzen 167:191–194

    CAS  Google Scholar 

  • Jimenez IM, Kühl M, Larkum AW, Ralph PJ (2011) Effects of flow and colony morphology on the thermal boundary layer of corals. J R Soc Interface 8:1785–1795. doi:10.1098/rsif.2011.0144

    Article  Google Scholar 

  • Jokiel PL, Brown EK (2004) Global warming, regional trends and inshore environmental conditions influence coral bleaching in Hawaii. Glob Change Biol 10:1627–1641. doi:10.1111/j.1365-2486.2004.00836.x

    Article  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim R, Hendriks IE, Ramajo L, Singh GS, Duarte CM, Gattuso J-P (2013) Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob Change Biol 19:1884–1896. doi:10.1111/gcb.12179

    Article  Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox EF, Stanton FG, Fitt WK, Schmidt GW (2004) High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603. doi:10.1007/s00338-004-0428-4

    Google Scholar 

  • Laurent J, Venn A, Tambutté É, Ganot P, Allemand D, Tambutté S (2013) Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis. FEBS J 281:683–695. doi:10.1111/febs.12614

    Article  Google Scholar 

  • Lesser MP (2006) Oxidative stress in marine environments: biochemistry and physiological ecology. Annu Rev Physiol 68:253–278. doi:10.1146/annurev.physiol.68.040104.110001

    Article  CAS  Google Scholar 

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131. doi:10.1046/j.1461-0248.2001.00203.x

    Article  Google Scholar 

  • Martin S, Gattuso J-P (2009) Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Glob Change Biol 15:2089–2100. doi:10.1111/j.1365-2486.2009.01874.x

    Article  Google Scholar 

  • McCulloch M, Falter J, Trotter J, Montagna P (2012) Coral resilience to ocean acidification and global warming through pH up-regulation. Nat Clim Chang 2:623–633. doi:10.1038/nclimate1473

    Article  CAS  Google Scholar 

  • Oliver TA, Palumbi SR (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440. doi:10.1007/s00338-011-0721-y

    Article  Google Scholar 

  • Padilla-Gamiño JL, Pochon X, Bird C, Concepcion GT, Gates RD (2012) From parent to gamete: vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7:e38440. doi:10.1371/journal.pone.0038440

    Article  Google Scholar 

  • Palumbi SR, Barshis DJ, Traylor-Knowles N, Bay RA (2014) Mechanisms of reef coral resistance to future climate change. Science 344:895–898. doi:10.1126/science.1251336

    Article  CAS  Google Scholar 

  • Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497. doi:10.1016/j.ympev.2010.03.040

    Article  CAS  Google Scholar 

  • Pörtner H-O, Peck L, Zielinski S, Conway L (1999) Intracellular pH and energy metabolism in the highly stenothermal Antarctic bivalve Limopsis marionensis as a function of ambient temperature. Polar Biol 22:17–30. doi:10.1007/s003000050386

    Article  Google Scholar 

  • Quinn GR, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rodolfo-Metalpa R, Martin S, Ferrier-Pagès C, Gattuso J-P (2010) Response of the temperate coral Cladocora caespitosa to mid-and long-term exposure to pCO2 and temperature levels projected in 2100. Biogeosci Discuss 7:289–300. doi:10.5194/bg-7-289-2010

    Article  CAS  Google Scholar 

  • Rodolfo-Metalpa R, Houlbrèque F, Tambutté E, Boisson F, Baggini C, Patti FP, Jeffree R, Fine M, Foggo A, Gattuso J-P, Hall-Spencer JM (2011) Coral and mollusc resistance to ocean acidification adversely affected by warming. Nat Clim Chang 1:308–312. doi:10.1038/nclimate1200

    Article  CAS  Google Scholar 

  • Sartoris F-J, Bock C, Serendero I, Lannig G, Pörtner H-O (2003) Temperature-dependent changes in energy metabolism, intracellular pH and blood oxygen tension in the Atlantic cod. J Fish Biol 62:1239–1253. doi:10.1046/j.1095-8649.2003.00099.x

    Article  CAS  Google Scholar 

  • Shamberger KE, Cohen AL, Golbuu Y, McCorkle DC, Lentz SJ, Barkley HC (2014) Diverse coral communities in naturally acidified waters of a western Pacific reef. Geophys Res Lett 41:499–504. doi:10.1002/2013GL058489

    Article  Google Scholar 

  • Stimson J, Kinzie RA III (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74. doi:10.1016/S0022-0981(05)80006-1

    Article  Google Scholar 

  • Venn AA, Tambutté E, Lotto S, Zoccola D, Allemand D, Tambutté S (2009) Imaging intracellular pH in a reef coral and symbiotic anemone. Proc Natl Acad Sci 106:16574–16579. doi:10.1073/pnas.0902894106

    Article  CAS  Google Scholar 

  • Venn AA, Tambutté E, Holcomb M, Laurent J, Allemand D, Tambutté S (2013) Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc Nat Acad Sci 110:1634–1639. doi:10.1073/pnas.1216153110

    Article  CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol 211:3059–3066. doi:10.1242/jeb.009597

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Carolina Mor of the University of Miami for providing the total alkalinity and salinity readings and Tom Hawkins of the University of Delaware for statistical advice. E.M.G was supported by a Commonwealth PhD Scholarship and a Journal of Experimental Biology Travel Grant. This manuscript is HIMB contribution number 1610 and SOEST contribution number 9257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon K. Davy.

Additional information

Communicated by R. Hill.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gibbin, E.M., Putnam, H.M., Gates, R.D. et al. Species-specific differences in thermal tolerance may define susceptibility to intracellular acidosis in reef corals. Mar Biol 162, 717–723 (2015). https://doi.org/10.1007/s00227-015-2617-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-015-2617-9

Keywords

Navigation