Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise)

Abstract

Mollusks, and particularly gastropods, are one of the major taxonomic groups at vents. In these ecosystems, devoid of light, chemoautotrophic bacteria are at the base of the food web and symbiotic association between metazoa and these bacteria is numerous. Nevertheless, apart few “large-size” well-known species, the “small-size” gastropods (shell <5 mm), although very abundant, remain poorly studied regarding symbioses. We investigated here Cyathermia naticoides (Warén and Bouchet in Zool Scr 18(1), 1989), a small coiled gastropod found in abundance on the East Pacific Rise among Riftia pachyptila tubes, and usually inferred to graze on tubeworm bacterial cover, and/or filter feeding. Among mollusks, symbioses are well known in large species and almost exclusively rely on sulfide or methane-oxidizing proteobacterial endosymbionts, occurring within the host tissues in gill epithelial bacteriocytes. Combining several approaches (molecular biology, microscopy, stable isotopes analyses), we described here an unusual symbiosis, where autotrophic filamentous Epsilonproteobacteria are located extracellularly, at the base of host gill filaments. Numerous endocytotic lysosome-like structures were observed in the gill epithelium of the animal suggesting bacteria may contribute to its nutrition through intracellular digestion by gill cells. Additional food source by non-symbiotic proteobacteria grazed on R. pachyptila tubes could complete the diet. The possible role of temperature in the selection of Epsilon- vs Gammaproteobacterial partners is discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Article  Google Scholar 

  2. Amann R, Binder B, Olson R, Chisholm S, Devereux R, Stahl D (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analysing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    CAS  Google Scholar 

  3. Bates A (2007a) Feeding strategy, morphological specialisation and presence of bacterial episymbionts in lepetodrilid gastropods from hydrothermal vents. Mar Ecol Prog Ser 347:87–99

    Article  Google Scholar 

  4. Bates A (2007b) Persistence, morphology, and nutritional state of a gastropod hosted bacterial symbiosis in different levels of hydrothermal vent flux. Mar Biol 152:557–568

    Article  Google Scholar 

  5. Bates A, Tunnicliffe V, Lee R (2005) Role of thermal conditions in habitat selection by hydrothermal vent gastropods. Mar Ecol Prog Ser 305:1–15

    Article  Google Scholar 

  6. Bates A, Harmer T, Roeselers G, Cavanaugh C (2011) Phylogenetic characterization of episymbiotic bacteria hosted by a hydrothermal vent limpet (Lepetodrilidae, Vetigastropoda). Biol Bull 220:118–127

    Google Scholar 

  7. Beinart R, Sanders J, Faure B, Sylva S, Lee R, Becker E, Gartman A, Luther III G, Seewald J, Fisher C, Girguis P (2013) Evidence for the role of endosymbionts in regional-scale habitat partitioning by hydrothermal vent symbioses. Proc Natl Acad Sci 109(47): doi:10.1073/pnas.1202690109

  8. Bergquist D, Eckner J, Urcuyo I, Cordes E, Hourdez S, Macko S, Fisher C (2007) Using stable isotopes and quantitative community characteristics to determine a local hydrothermal vent food web. Mar Ecol Prog Ser 330:49–65

    Article  Google Scholar 

  9. Borowski C, Giere O, Krieger J, Amann R, Dubilier N (2002) New aspects of the symbiosis in the provannid snail Ifremeria nautilei from the north Fiji back arc basin. Cah Biol Mar 43:321–324

    Google Scholar 

  10. Bright M, Giere O (2005) Microbial symbiosis in Annelida. Symbiosis 38:1–45

    Google Scholar 

  11. Campbell B, Stein J, Cary S (2003) Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69(9):5070–5078

    CAS  Article  Google Scholar 

  12. Campbell B, Engel A, Porter M, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458–468

    CAS  Article  Google Scholar 

  13. Cary S, Cottrell M, Stein J, Camacho F, Desbruyères D (1997) Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent Annelid Alvinella pompejana. Appl Environ Microbiol 63:1124–1130

    CAS  Google Scholar 

  14. Cole J, Wang Q, Cardenas E, Fish J, Chai B, Farris R, Kulam-Mohideen A, McGarrell D, Marsh T, Garrity G, Tiedje J (2009) The ribosomal database project: improved alignments and new toolds for rRNA analysis. Nucleic Acids Res 37:141–145

    Article  Google Scholar 

  15. de Burgh M, Singla C (1984) Bacterial colonization and endocytosis on the gill of a new limpet species from a hydrothermal vent. Mar Biol 84:1–6

    Article  Google Scholar 

  16. Desbruyères D, Chevaldonné P, Alayse A, Jollivet D, Lallier F, Jouin-Toulmond C, Zal F, Sarradin P, Cosson R, Caprais J, Arndt C, O’Brien J, Guezennec J, Hourdez S, Riso R, Gaill F, Laubier L, Toulmond A (1998) Biology and ecology of the “Pompeii worm” (Alvinella pompejana Desbruyères and Laubier), a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep Sea Res Part II 45:383–422

    Article  Google Scholar 

  17. Desbruyères D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna. Second completely revised edition. Biologiezentrum der Oberösterreichischen Landesmuseen, Austria

  18. Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740

    CAS  Article  Google Scholar 

  19. Felbeck H, Somero G (1982) Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. Trends Biochem Sci 7(6):201–204

    CAS  Article  Google Scholar 

  20. Forget N, Juniper K (2013) Free-living bacterial communities associated with tubeworm (Ridgeia piscesae) aggregations in contrasting diffuse flow hydrothermal vent habitats at the Main Endeavour Field, Juan de Fuca Ridge. MicrobiologyOpen 2(2):259–275

    CAS  Article  Google Scholar 

  21. Fox M, Juniper S, Vali H (2002) Chemoautotrophy as a possible nutritional source in the hydrothermal vent limpet Lepetodrilus fucensis. Cah Biol Mar 43:371–376

    Google Scholar 

  22. Gaill F, Shillito B (1995) Chitin from deep sea hydrothermal vent organisms. In: André J (ed) Giraud-Guille M. Chitin in Life Science, Lyon, pp 88–96

    Google Scholar 

  23. Gaudron SM, Lefebvre S, Nunes Jorge A, Gaill F, Pradillon F (2012) Spatial and temporal variations in food web structure from newly-opened habitat at hydrothermal vents. Mar Environ Res 77:129–140

    CAS  Article  Google Scholar 

  24. Goffredi S, Waren A, Orphan V, Van Dover C, Vriejenhoek R (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70(5):3082–3090

    CAS  Article  Google Scholar 

  25. Goffredi S, Jones W, Ehrlich H, Springer A, Vriejenhoek C (2008) Epibiotic bacteria associated with the recently discovered Yeti crab, Kiwa hirsuta. Environ Microbiol 10(10):2623–2634

    CAS  Article  Google Scholar 

  26. Gutowska M, Drazen J, Robison B (2004) Digestive chitinolytic activity in marine fishes of Monterey Bay, California. Comp Biochem Physiol Part A 139:351–358

    Article  Google Scholar 

  27. Haddad A, Camacho F, Durand P, Cary S (1995) Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61(5):1679–1687

    CAS  Google Scholar 

  28. Henry M, Childress J, Figueroa D (2008) Metabolic rates and thermal tolerances of chemoautotrophic symbioses from Lau Basin hydrothermal vents and their implications for species distributions. Deep Sea Res Part I 55:679–695

    Article  Google Scholar 

  29. Jeuniaux C (1966) Chitinases. Methods Enzymol 8:644–650

    CAS  Article  Google Scholar 

  30. Kaehler S, Pakhomov E (2001) Effects of storage and preservation on the delta C-13 and delta N-15 signatures of selected marine organisms. Mar Ecol Prog Ser 219:299–304

    CAS  Article  Google Scholar 

  31. Katz S, Cavanaugh C, Bright M (2006) Symbiosis of epi- and endocuticular bacteria with Helicoradomenia spp. (Mollusca, Aplacophora, Solenogastres) from deep-sea hydrothermal vents. Mar Ecol Prog Ser 320:89–99

    Article  Google Scholar 

  32. Kohn A (1983) Feeding biology of Gastropods. In: Wilbur KM (ed) The Mollusca. Academic Press, New York, pp 1–63

    Google Scholar 

  33. Kouris A, Juniper K, Frebourg G, Gaill F (2007) Protozoan–bacterial symbiosis in a deep-sea hydrothermal vent folliculinid ciliate (Folliculinopsis sp.) from the Juan de Fuca Ridge. Mar Ecol 28:63–71

    Article  Google Scholar 

  34. Le Bris N, Zbinden M, Gaill F (2005) Processes controlling the physico-chemical micro-environments associated with Pompeii worms. Deep sea Res Part I 52:1071–1083

    Article  Google Scholar 

  35. Levesque C, Juniper K, Limén H (2006) Spatial organization of food webs along habitat gradients at deep-sea hydrothermal vents on Axial Volcano, Northeast Pacific. Deep Sea Res Part I 53:726–739

    Article  Google Scholar 

  36. Limén H, Levesque C, Juniper K (2007) POM in macro-/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar Biol 153:129–139

    Article  Google Scholar 

  37. López-García P, Gaill F, Moreira D (2002) Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4(4):204–215

    Article  Google Scholar 

  38. Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer K, Wagner M (2002) Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68:5064–5081

    CAS  Article  Google Scholar 

  39. MacPherson E, Jones W, Segonzac M (2005) A new lobster family of Galatheoidea (Crustacea, Decapoda, Anomura) from the hydrothermal vents of the Pacific-Antarctic Ridge. Zoosystema 27(4):709–722

    Google Scholar 

  40. Manz W, Amann R, Wagner M, Schleifer K (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  41. Meyer B, Kuever J (2007) Phylogeny of the alpha and beta subunits of the dissimilatory adenosine-5’-phosphosulfate (APS) reductase from sulfate-reducing prokaryotes—origin and evolution of the dissimilatory sulfate-reduction pathway. Microbiology 153:2026–2044

    CAS  Article  Google Scholar 

  42. Mills S, Mullineaux L, Tyler P (2007) Habitat associations in gastropod species at East Pacific Rise hydrothermal vents (9 50’N). Biol Bull 212:185–194

    Article  Google Scholar 

  43. Miyake H, Kitada M, Tsuchida S, Okuyama Y, Nakamura K (2007) Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure. Mar Ecol 28:86–92

    Article  Google Scholar 

  44. Moreno Y, Botella S, Alonso J, Ferrús M, Hernández M, Hernández J (2003) Specific detection of arcobacter and campylobacter strains in water and sewage by PCR and fluorescent in situ hybridization. Appl Environ Microbiol 69:1181–1186

    CAS  Article  Google Scholar 

  45. Petersen J, Ramette A, Lott C, Cambon-Bonavita M-A, Zbinden M, Dubilier N (2010) Dual symbiosis of the vent shrimp Rimicaris exoculata with filamentous gamma- and epsilonproteobacteria at four Mid-Atlantic Ridge hydrothermal vent fields. Environ Microbiol 12(8):2204–2218

    CAS  Google Scholar 

  46. Polz M, Robinson J, Cavanaugh C, Van Dover C (1998) Trophic ecology of massive shrimp aggregations at a mid-Atlantic Ridge hydrothermal vent site. Limnol Oceanogr 43(7):1631–1638

    CAS  Article  Google Scholar 

  47. Ponsard J, Cambon-Bonavita M-A, Zbinden M, Lepoint G, Joassin A, Corbari L, Shillito B, Durand L, Cueff-Gauchard V, Compère P (2013) Inorganic carbon fixation by chemosynthetic ectosymbionts and nutritional transfers to the hydrothermal vent host-shrimp, Rimicaris exoculata. ISME J 7:96–109

    CAS  Article  Google Scholar 

  48. Pruesse E, Quast C, Knittel K, Fuchs B, Ludwig W, Peplies J, Glöckner F (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    CAS  Article  Google Scholar 

  49. Ravaux J, Shillito B, Gaill F, Gay L, Voss-Foucart M-F, Childress J (1998) Tubes synthesis and growth process in the hydrothermal vent tube-worm Riftia pachyptila. Cah Biol Mar 39:325–326

    Google Scholar 

  50. Saito H, Hashimoto J (2010) Characteristics of the fatty acid composition of a deep-sea vent gastropod, Ifremeria nautilei. Lipids 45:537–548

    CAS  Article  Google Scholar 

  51. Sarradin P, Caprais J, Briand P, Gaill F, Shillito B, Desbruyères D (1998) Chemical and thermal description of the environment of the Genesis hydrothermal vent community (13°N, EPR). Cah Biol Mar 39:159–167

    Google Scholar 

  52. Sasaki T, Warén A, Kano Y, Okutani T, Fujikura K (2010) Gastropods from recent hot vents and cold seeps: systematics, diversity and life strategies. In: Kiel S (ed) The vent and seep biota. Springer Science, New York

    Google Scholar 

  53. Segonzac M, de Saint-Laurent M, Casanova B (1993) L’énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-atlantique. Cah Biol Mar 34:535–571

    Google Scholar 

  54. Sievert S, Vetriani C (2012) Chemoautotrophy at deep-sea vents: past, present, and future. Oceanography 25(1):218–233

    Article  Google Scholar 

  55. Suzuki Y, Sasaki T, Suzuki M, Tsuchida S, Nealson K, Horikoshi K (2005a) Molecular phylogenetic and isotopic evidence of two lineages of chemoautotrophic endosymbionts distinct at the subdivision level harbored in one host-animal type: the genus Alviniconcha (Gastropoda: Provannidae). FEMS Microbiol Ecol 249:105–112

    CAS  Article  Google Scholar 

  56. Suzuki Y, Sasaki T, Suzuki M, Nogi Y, Miwa T, Takai K, Nealson K, Horikoshi K (2005b) Novel chemoautotrophic endosymbiosis between a member of the epsilon-proteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl Environ Microbiol 71(9):5440–5450

    CAS  Article  Google Scholar 

  57. Suzuki Y, Kojima S, Sasaki T, Suzuki M, Utsumi T, Watanabe H, Urakawa H, Tsuchida S, Nunoura T, Hirayama H, Takai K, Nealson K, Horikoshi K (2006) Host-symbiont relationships in hydrothermal vent gastropods of the genus Alviniconcha from the southwest Pacific. Appl Environ Microbiol 72(2):1388–1393

    CAS  Article  Google Scholar 

  58. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  Article  Google Scholar 

  59. Thurber A, Jones W, Schnabel K (2011) Dancing for Food in the deep sea: bacterial farming by a new species of yeti crab. PLoS One 6(11):e26243. doi:10.1371/journal.pone.0026243

    CAS  Article  Google Scholar 

  60. Urakawa H, Dubilier N, Fujiwara Y, Cunningham D, Kojima S, Stahl D (2005) Hydrothermal vent gastropods from the same family (Provannidae) harbour epsilon- and gamma -proteobacterial endosymbionts. Environ Microbiol 7(5):750–754

    CAS  Article  Google Scholar 

  61. Vetter R, Fry B (1998) Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar Biol 132:453–460

    CAS  Article  Google Scholar 

  62. Warén A, Bouchet P (1989) New gastropods from East Pacific hydrothermal vents. Zool Scr 18(1):67–102

    Article  Google Scholar 

  63. Waren A, Bouchet P, von Cosel R (2006) Cyathermia naticoides Warèn & Bouchet, 1989. In: Desbruyères D, Segonzac M, Bright M (eds) Handbook of deep-sea hydrothermal vent fauna. Denisia 18, Biologiezentrum Linz, Austria, pp 104

  64. Windoffer R, Giere O (1997) Symbiosis of the hydrothermal vent gastropod Ifremeria nautilei (Provannidae) with endobacteria—structural analyses and ecological considerations. Biol Bull 193:381–392

    Article  Google Scholar 

  65. Yamamoto M, Takai K (2011) Sulfur metabolisms in epsilon- and gamma-proteobacteria in deep-sea hydrothermal fields. Front Microbiol 2: doi: 10.3389/fmicb.2011.00192

  66. Zbinden M, Shillito B, Le Bris N, de De Vilardi Montlaur C, Roussel E, Guyot F, Gaill F, Cambon-Bonavita M-A (2008) New insights on the metabolic diversity among the epibiotic microbial community of the hydrothermal shrimp Rimicaris exoculata. J Exp Mar Biol Ecol 159(2):131–140

    Article  Google Scholar 

  67. Zbinden M, Pailleret M, Ravaux J, Gaudron S, Hoyoux C, Lorion J, Halary S, Warén A, Duperron S (2010) Bacterial communities associated with the wood-feeding gastropod Pectinodonta sp. (Patellogastropoda, Mollusca). FEMS Microbiol Ecol 74:450–463

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We thank the chief scientists, N. Le Bris and F. Lallier, as well as the captain and crew of the RV Atalante and the ‘Nautile’ team for their help during the Mescal 2010 cruise. We thank E. Thiébaut and Marjolaine Matabos for their help in sorting an identifying the various gastropods sampled. TEM was performed at the ‘Plateforme de Microscopie Electronique’ (MNHN) with the help of C. Djediat. Work was funded through UPMC and CNRS.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The authors declare that the experiments comply with the current laws of the country they were performed (France).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magali Zbinden.

Additional information

Communicated by M.Kühl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Phylogenetic reconstruction based on a 100-aa-long fragment of the aclB gene. A maximum-likelihood approach using the JTT matrix-based model and a discrete Gamma distribution of evolutionary rates with a proportion of invariant sites was used. All bacteria from the ingroup are Epsilonproteobacteria, and the tree is rooted on two Aquificales. Boostrap percentage values based on 500 replicates are displayed. Scale bar corresponds to 10 % estimated sequence divergence (PDF 103 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zbinden, M., Marqué, L., Gaudron, S.M. et al. Epsilonproteobacteria as gill epibionts of the hydrothermal vent gastropod Cyathermia naticoides (North East-Pacific Rise). Mar Biol 162, 435–448 (2015). https://doi.org/10.1007/s00227-014-2591-7

Download citation

Keywords

  • Gammaproteobacteria
  • Hydrothermal Vent
  • Gill Filament
  • Filamentous Bacterium
  • Gill Epithelium