Marine Biology

, Volume 162, Issue 1, pp 193–206 | Cite as

Factors influencing the distribution of trematode larvae in blue mussels Mytilus edulis in the North Atlantic and Arctic Oceans

  • Kirill V. Galaktionov
  • Jan O. Bustnes
  • Bård-J. Bårdsen
  • James G. Wilson
  • Kirill E. Nikolaev
  • Alexey A. Sukhotin
  • Karl Skírnisson
  • Donald H. Saville
  • Mikhail V. Ivanov
  • Kira V. Regel
Original Paper


Blue mussels, Mytilus edulis, serve as second intermediate hosts for several trematode species, but little is known about the mechanisms underlying parasite infections in mussels. To reveal these mechanisms, the prevalence and intensity of trematode larvae (metacercariae in species of Gymnophallus, Himasthla and Renicola) were examined in blue mussels at 19 intertidal sites from the North Atlantic (Ireland, Iceland, Norway) to the Arctic Ocean (north-western Russia). Mussel samples were taken in 2005–2008. The impact of a number of environmental (maximal sea surface temperature, SSTmax) and biological factors (mussel age and density and the abundance of avian final hosts) on trematode infection was examined. Infection levels correlated with the interaction between local bird abundance and mussel age and density. They increased with mussel age but their dependence on mussel density and bird abundance varied among parasite genera. Prevalence and intensity increased with SSTmax for Renicola spp., but no relationship was found for Gymnophallus and Himasthla spp. The ambiguous effect of SSTmax is likely explained by the broad range of optimal temperatures for the normal functioning of trematode larvae (cercariae) infective for mussels and by the high dependence of the level of mussel infection on a combination of local ecological factors. High infection levels were observed even in localities with a low SSTmax. No mussels were infected in the most north-eastern population, probably due to extreme conditions in the Arctic intertidal preventing trematode transmission. Future warming of the Arctic may accelerate trematode transmission in this system.


Intermediate Host Blue Mussel Final Host Bird Abundance Mussel Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by grants from INTAS (Ref. No. 05–1000008–8056), the Russian Foundation for Basic Research (No. 13–04–00875) and St. Petersburg State University (No.

Supplementary material

227_2014_2586_MOESM1_ESM.pdf (63 kb)
Supplementary material 1 (PDF 63 kb)
227_2014_2586_MOESM2_ESM.pdf (206 kb)
Supplementary material 2 (PDF 205 kb)
227_2014_2586_MOESM3_ESM.pdf (108 kb)
Supplementary material 3 (PDF 107 kb)
227_2014_2586_MOESM4_ESM.pdf (515 kb)
Supplementary material 4 (PDF 515 kb)


  1. Anderson DR, Burnham KP, Thompson WL (2000) Null hypothesis testing: problems, prevalence, and an alternative. J Wildl Manag 64:912–923CrossRefGoogle Scholar
  2. Baker JM, Crothers JH (1986) Chapter 8. Intertidal rock. In: Baker JM, Wolff WJ (eds) Biological surveys of estuaries and coasts. Cambridge University Press, Cambridge, pp 157–197Google Scholar
  3. Beliaeff B, O’Connor TP, Daskalakis DK, Smith PI (1997) US mussel watch data from 1986 to 1994: temporal trend detection at large spatial scales. Environ Sci Technol 31:1411–1415CrossRefGoogle Scholar
  4. Buckland ST, Burnham KP, Augustin NH (1997) Model selection: an integral part of inference. Biometrics 53:603–618CrossRefGoogle Scholar
  5. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information–theoretic approach, 2nd edn. Springer Inc., New YorkGoogle Scholar
  6. Buschbaum C, Dittmann S, Hong J-S, Hwang I-S, Strasser M, Thiel M, Valdivia N, Yoon S-P, Reise K (2009) Mytilid mussels: global habitat engineers in coastal sediments. Helgol Mar Res 63:47–58CrossRefGoogle Scholar
  7. Bustnes JO (1998) Size selection of blue mussels Mytilus edulis by common eiders Somateria mollissima in relation to shell content. Can J Zool 76:1787–1790CrossRefGoogle Scholar
  8. Bustnes JO, Galaktionov KV, Irwin SWB (2000) Potential threats to littoral biodiversity: Is increased parasitism a consequence of human activity? Oikos 90:189–190CrossRefGoogle Scholar
  9. Byers JE, Blakeslee AMH, Linder E, Cooper AB, Maguire TJ (2008) Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology 89:439–451CrossRefGoogle Scholar
  10. Combes C (2001) Parasitism, the ecology and evolution of intimate interactions. The University of Chicago Press, ChicagoGoogle Scholar
  11. Commito JA, Celano EA, Celico HJ, Como S, Johnson CP (2005) Mussels matter: postlarval dispersal dynamics altered by a spatially complex ecosystem engineer. J Exp Mar Biol Ecol 316:133–147CrossRefGoogle Scholar
  12. Curtis LA (2002) Ecology of larval trematodes in three marine gastropods. Parasitology 124:S43–S56CrossRefGoogle Scholar
  13. Dahl-Jensen D, Bamber J, Boggild CE, Buch E, Christensen JH, Dethloff K et al (2011) Chapter 8. The Greenland Ice Sheet in a changing climate. In: AMAP 2011. Snow, water, ice and permafrost in the Arctic (SWIPA): climate change and the cryosphere, AMAP, OsloGoogle Scholar
  14. de Montaudouin X, Lanceleur L (2011) Distribution of parasites in their second intermediate host, the cockle Cerastoderma edule: community heterogeneity and spatial scale. Mar Ecol Prog Ser 428:187–199CrossRefGoogle Scholar
  15. de Montaudouin X, Wegeberg AM, Jennsen KT, Sauriau PG (1998) Infection characteristics of Himasthla elongata cercaria in cockles as a function of water current. Dis Aquat Organ 34:63–70CrossRefGoogle Scholar
  16. de Montaudouin X, Binias C, Lassalle G (2012) Assessing parasite community structure in cockles Cerastoderma edule at various spatio-temporal scales. Estuar Coast Shelf Sci 110:54–60CrossRefGoogle Scholar
  17. Denisenko SG (2013) Biodiversity and bioresources of macrozoobenthos in the Barents Sea. Structure and long-term changes. Nauka, Saint Petersburg (in Russian)Google Scholar
  18. Desclaux C, de Montaudouin X, Bachelet G (2004) Cockle Cerastoderma edule population mortality: role of the digenean parasite Himasthla quissetensis. Mar Ecol Prog Ser 279:141–150CrossRefGoogle Scholar
  19. Development Core Team R (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  20. Fredensborg BL, Mouritsen KN, Poulin R (2006) Relating bird host distribution and spatial heterogeneity in trematodes infection in an intertidal snail-from small to large scale. Mar Biol 149:275–283CrossRefGoogle Scholar
  21. Galaktionov KV (1993) Life cycles of trematodes as components of ecosystems. Kola Scientific Centre of the Russian Academy of Sciences Press, Apatity (in Russian)Google Scholar
  22. Galaktionov KV (1996) Life cycles and distribution of seabird helminths in Arctic and sub-Arctic region. Bull Scand Soc Parasitol 6:31–49Google Scholar
  23. Galaktionov KV, Bustnes JO (1999) Distribution patterns of marine birds digenean larvae in periwinkles along the southern coast of the Barents sea. Dis Aquat Organ 37:221–230CrossRefGoogle Scholar
  24. Galaktionov KV, Skírnisson K (2000) Digeneans from intertidal molluscs of SW Iceland. Syst Parasitol 47:87–101CrossRefGoogle Scholar
  25. Galaktionov KV, Kuklin VV, Ishkulov DG, Galkin AK, Marasaev SF, Marasaeva EF, Prokofiev VV (1997) On the helminths fauna of birds from the coast and islands of Eastern Murman (the Barents Sea). In: Matishov GG (ed) Ekologiya ptits i tyulenei v moryakh severo-zapada Rossii (Ecology of birds and seals in the seas of the Northwestern Russia). Kola Scientific Centre of the Russian Academy of Sciences Publ., Apatity, pp 67–153 (in Russian)Google Scholar
  26. Galaktionov KV, Irwin SWB, Prokofiev VV, Saville DH, Nikolaev KE, Levakin IA (2006) Trematode transmission in coastal communities—temperature dependence and climate change perspectives. In: Hurd H (ed) Proceedings of the 11th international congress of parasitology. Medimond, Bologna, pp 85–90Google Scholar
  27. Goater CP (1993) Population biology of Meiogymnophallus minutus (Trematoda: Gymnophallidae) in cockles from the Exe estuary. J Mar Biol Assoc UK 73:163–177CrossRefGoogle Scholar
  28. Granovitch AI, Sergievsky SO, Sokolova IM (2000) Spatial and temporal variation of trematode infestation in coexisting populations of intertidal gastropods Littorina saxatilis and L. obtusata in the White Sea. Dis Aquat Organ 41:53–64CrossRefGoogle Scholar
  29. Granovitch AI, Yagunova EB, Maximovich AN, Sokolova IM (2009) Elevated female fecundity as a possible compensatory mechanism in response to trematode infestation in populations of Littorina saxatilis (Olivi). Int J Parasitol 39:1011–1019CrossRefGoogle Scholar
  30. Grosholz ED (1994) The effects of host genotype and spatial distribution on trematode parasitism in a bivalve population. Ecology 48:1514–1524Google Scholar
  31. Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc R Soc Lond B Biol Sci 272:1059–1066CrossRefGoogle Scholar
  32. Hoberg EP, Kutz SJ, Cook J, Galaktionov KV, Haukisalmi V, Henttonen H, Laaksonen S, Makarikov A, Marcogliese DJ (2013) Chapter 15. Parasites. In: Meltofte H, Josefson AB, Payer D (eds) Arctic biodiversity assessment: status and trends in Arctic biodiversity. The conservation of arctic flora and fauna (CAFF), Arctic Council, Akureyri, pp 420–449.
  33. Jørgensen CB (1990) Bivalve filter feeding: hydrodynamics, bioenergetics, physiology and ecology. Olsen and Olsen, FredensborgGoogle Scholar
  34. Kattsov VM, Källén E (2005) Future climate change: modeling and scenarios for the Arctic. In: ACIA (ed) Arctic climate impact assessment. Cambridge University Press, New York, pp 99–150Google Scholar
  35. Khaitov V (2013) Life in an unstable house: community dynamics in changing mussel beds. Hydrobiologia 706:139–158CrossRefGoogle Scholar
  36. Krasnov YuV, Goryaev YuI, Shavykin AA, Nikolaeva NG, Gavrilo MV, Chernook VI (2002) Atlas of the Pechora Sea birds: distribution, abundance, dynamics, problems of protection. Kola Branch of the Russian Academy of Sciences, Apatity (in Russian)Google Scholar
  37. Krasnov YV, Gavrilo MV, Chernook VI (2004) Distribution of birds over the Pechora Sea: data of aerial surveys. Zool Zh 83:449–458 (in Russian)Google Scholar
  38. Lauckner G (1983) Diseases of mollusca: Bivalvia. In: Kinne O (ed) Diseases of marine animals, vol 2. Biologische Anstalt Helgoland, Hamburg, pp 632–961Google Scholar
  39. Lauckner G (1987) Ecological effect of larval trematode infestation on littoral marine invertebrate populations. Int J Parasitol 17:391–398CrossRefGoogle Scholar
  40. Levakin IA, Losev EA, Nikolaev KE, Galaktionov KV (2013a) In vitro encystment of Himasthla elongata cercariae (Digenea, Echinostomatidae) in the hemolymph of blue mussels Mytilus edulis as a tool for assessing cercarial infectivity and molluscan susceptibility. J Helminthol 87:180–188CrossRefGoogle Scholar
  41. Levakin IA, Nikolaev KE, Galaktionov KV (2013b) Long-term variation in trematode (Trematoda, Digenea) component communities associated with intertidal gastropods is linked to abundance of final hosts. Hydrobiologia 706:103–118CrossRefGoogle Scholar
  42. Loeng H, Blindhelm J, Andalsvlk B, Ottersen G (1992) Climatic variability in the Norwegian and Barents Seas. ICES Mar Sci Symp 195:52–61Google Scholar
  43. Loos-Frank B (1967) Experimentelle Untersuchungen über Bau, Entwicklung und Systematik der Himasthlinae (Trematoda, Echinostomatidae) des Nordseeraumes. Z Parasitenk 28:299–351CrossRefGoogle Scholar
  44. Lynch SA, Morgan E, Carlsson J, Mackenzie C, Wooton EC, Rowley AF, Malham S, Culloty SC (2014) The health status of mussels, Mytilus spp., in Ireland and Wales with the molecular identification of a previously undescribed haplosporidian. J Invertebr Pathol. doi: 10.1016/j.jip.2014.02.012 Google Scholar
  45. Marcogliese DJ (2005) Parasites of the superorganism: Are they indicators of ecosystem health? Int J Parasitol 35:705–716CrossRefGoogle Scholar
  46. Matthews PM, Montgomery WI, Hanna REB (1985) Infestation of littorinids by larval digenea around a small fishing port. Parasitology 90:277–287CrossRefGoogle Scholar
  47. Merlo MJ, Etchegoin JA (2011) Testing temporal stability of the larval digenean community in Heleobia conexa (Mollusca: Cochliopidae) and its possible use as an indicator of environmental fluctuations. Parasitology 138:249–256CrossRefGoogle Scholar
  48. Morley NJ, Lewis JW (2013) Thermodynamics of cercarial development and emergency in trematodes. Parasitology 140:1442–1452CrossRefGoogle Scholar
  49. Mouritsen KN, Poulin R (2002) Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology 124:S101–S117Google Scholar
  50. Mouritsen KN, Poulin R (2010) Parasitism as a determinant of community structure on intertidal flats. Mar Biol 157:201–213CrossRefGoogle Scholar
  51. Mouritsen KN, McKechnie S, Meenken E, Toynbee JL, Poulin R (2003) Spatial heterogeneity in parasite loads in the New Zealand cockle: the importance of host condition and density. J Mar Biol Assoc UK 83:307–310CrossRefGoogle Scholar
  52. Nielsen TG, Maar M (2007) Effects of a blue mussel Mytilus edulis bed on vertical distribution and composition of the pelagic food web. Mar Ecol Prog Ser 339:185–198CrossRefGoogle Scholar
  53. Nikolaev KE, Sukhotin AA, Galaktionov KV (2006) Patterns in infection of the White Sea blue mussels (Mytilus edulis L.) of different age and size with metacercariae of digenetic trematodes Himasthla elongata (Mehlis, 1831) (Echinostomatidae) and Cercaria parvicaudata Stunkard and Shaw, 1931 (Renicolidae). Dis Aquat Organ 71:51–58CrossRefGoogle Scholar
  54. Overland JE, Wood KR, Wang M (2011) Warm Arctic—cold continents: climate impacts of the newly open Arctic Sea. Polar Res 30:15787. doi: 10.3402/polar.v30i0.15787 CrossRefGoogle Scholar
  55. Poulin R (2006a) Variation in infection parameters among populations within parasite species: intrinsic properties versus local factors. Int J Parasitol 36:877–885CrossRefGoogle Scholar
  56. Poulin R (2006b) Global warming and temperature-mediated increases in cercarial emergence in trematode parasites. Parasitology 132:143–151CrossRefGoogle Scholar
  57. Poulin R (2007) Evolutionary ecology of parasites. Princeton University Press, PrincetonGoogle Scholar
  58. Prinz K, Kelly TC, O’Riordan RM, Culloty SC (2011) Factors influencing cercarial emergence and settlement in the digenean trematode Parorchis acanthus (Philophthalmidae). J Mar Biol Assoc UK 91:1673–1679CrossRefGoogle Scholar
  59. Prokofiev VV (2001) Reactions to the light of the littoral trematode Renicola thaidus (Trematoda: Renicolidae). Parazitologiya 35:429–435 (in Russian)Google Scholar
  60. Prokofiev VV (2002) Vertical migration of cercariae of the littoral trematode Renicola thaidus (Trematoda: Renicolidae) in the water layer. Parazitologiya 36:316–323 (in Russian)Google Scholar
  61. Prokofiev VV (2006) Strategies of the animal hosts infection with trematode cercariae: an attempt of analysis in marine coastal and lake ecosystems of northwestern Russia. Dissertation, Zoological Institute of the Russian Academy of Sciences, St. Petersburg (in Russian)Google Scholar
  62. Prokofiev VV, Galaktionov KV (2009) Strategies of search behaviour in trematode cercariae. Proceedings of the Zoological Institute 313:308–318 (in Russian)Google Scholar
  63. Skírnisson K, Galaktionov KV, Kozminsky EV (2004) Factors influencing the distribution of digenetic trematode infections in a mudsnail (Hydrobia ventrosa) population inhabiting salt marsh ponds in Iceland. J Parasitol 90:50–59CrossRefGoogle Scholar
  64. Smaal AC (2002) European mussel cultivation along the Atlantic coast: production status, problems and perspectives. Hydrobiologia 484:89–98CrossRefGoogle Scholar
  65. Smith NF (2001) Spatial heterogeneity in recruitment of larval trematodes to snail intermediate hosts. Oecologia 127:115–122CrossRefGoogle Scholar
  66. Studer A, Widmann M, Poulin R, Krkošek M (2013) Large scale patterns of trematode parasitism in a bivalve host: no evidence for latitudinal gradient in infection levels. Mar Ecol Prog Ser 491:125–135CrossRefGoogle Scholar
  67. Stunkard HW (1964) Studies on the trematode genus Renicola: observations on the life history, specificity and systematic position. Biol Bull 126:468–489Google Scholar
  68. Stunkard HW, Shaw CR (1931) The effect of dilution of sea water on the activity and longevity of certain marine cercariae, with description of two new species. Biol Bull 61:242–271CrossRefGoogle Scholar
  69. Sukhotin A, Berger V (2013) Long-term monitoring studies as a powerful tool in marine ecosystem research. Hydrobiologia 706:1–9CrossRefGoogle Scholar
  70. Sukhotin AA, Krasnov YV, Galaktionov KV (2008) Subtidal populations of the blue mussel Mytilus edulis as key determinants of waterfowl flocks in the southeastern Barents Sea. Polar Biol 31:1357–1363CrossRefGoogle Scholar
  71. Theisen BF (1973) The growth of Mytilus edulis L. (Bivalvia) from Disko and Thule district. Greenland. Ophelia 12:59–77CrossRefGoogle Scholar
  72. Thieltges DW (2006) Effect of infection by the metacercarial trematoda Renicola roscovita on growth in intertidal blue mussel Mytilus edulis. Mar Ecol Prog Ser 319:129–134CrossRefGoogle Scholar
  73. Thieltges DW (2007) Habitat and transmission—effect of tidal level and upstream host density on metacercarial load in an intertidal bivalve. Parasitology 134:599–605CrossRefGoogle Scholar
  74. Thieltges DW, Reise K (2007) Spatial heterogeneity in parasite infections at different spatial scales in an intertidal bivalve. Oecologia 150:569–581CrossRefGoogle Scholar
  75. Thieltges DW, Rick J (2006) Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Dis Aquat Organ 73:63–68CrossRefGoogle Scholar
  76. Thieltges DW, Jensen KT, Poulin R (2008) The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology 135:407–426Google Scholar
  77. Thieltges DW, Fredensborg BL, Poulin R (2009) Geographical variation in metacercarial levels in marine invertebrate hosts: parasite species character versus local factors. Mar Biol 156:983–990CrossRefGoogle Scholar
  78. Thieltges DW, Marcogliese DJ, Blanar CA, Poulin R (2013) Trematode prevalence–occupancy relationships on regional and continental spatial scales in marine gastropod hosts. Mar Ecol Prog Ser 490:147–154CrossRefGoogle Scholar
  79. Thomas F, Guégan J-F, Renaud F (eds) (2009) Ecology and evolution of parasitism. Oxford University Press, New YorkGoogle Scholar
  80. Väinölä R, Strelkov P (2011) Mytilus trossulus in Northern Europe. Mar Biol 158:817–833CrossRefGoogle Scholar
  81. Viarengo A, Lowe D, Bolognesi C, Fabbri E, Koehler A (2007) The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comp Biochem Phys C 146:281–300Google Scholar
  82. Werding B (1969) Morphologie, entwicklung und ökologie digener trematoden–larven der strandschpecke Littorina littorea. Mar Biol 3:306–333CrossRefGoogle Scholar
  83. Wilson JG, Galaktionov KV, Sukhotin AA, Skírnisson K, Nikolaev KE, Ivanov MV, Bustnes JO, Saville DH, Regel KV (2013) Factors influencing trematode parasite burdens in mussels (Mytilus spp.) from the North Atlantic Ocean across to the North Pacific. Estuar Coast Shelf Sci 132:87–93CrossRefGoogle Scholar
  84. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall/CRC, Boca Ranton, London, New YorkGoogle Scholar
  85. Wood SN (2014) The mgcv package: GAMs with GCV smoothness estimation and GAMMs by REML/PQL. R package version 1.8-3Google Scholar
  86. Zbawicka M, Drywa A, Śmietanka B, Wenne R (2012) Identification and validation of novel SNP markers in European populations of marine Mytilus mussels. Mar Biol 159:1347–1362CrossRefGoogle Scholar
  87. Zolotarev VN (1989) Sclerochronology of marine bivalve mollusks. Naukova Dumka, Kiev (In Russian)Google Scholar
  88. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Kirill V. Galaktionov
    • 1
    • 2
  • Jan O. Bustnes
    • 3
  • Bård-J. Bårdsen
    • 3
  • James G. Wilson
    • 4
  • Kirill E. Nikolaev
    • 5
  • Alexey A. Sukhotin
    • 5
    • 2
  • Karl Skírnisson
    • 6
  • Donald H. Saville
    • 7
  • Mikhail V. Ivanov
    • 8
  • Kira V. Regel
    • 9
  1. 1.Laboratory of Parasitic Worms and White Sea Biological StationZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Invertebrate Zoology DepartmentSt. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Norwegian Institute for Nature ResearchTromsöNorway
  4. 4.Zoology DepartmentTrinity CollegeDublin 2Ireland
  5. 5.White Sea Biological StationZoological Institute of the Russian Academy of SciencesSt. PetersburgRussia
  6. 6.University of IcelandKeldurIceland
  7. 7.School of Environmental SciencesUniversity of UlsterNewtownabbeyN. Ireland, UK
  8. 8.Hydrobiology and Ichthyology DepartmentSt. Petersburg State UniversitySt. PetersburgRussia
  9. 9.Laboratory of Helminths’ EcologyInstitute of the Biological Problems of the North of the Russian Academy of SciencesMagadanRussia

Personalised recommendations