Abstract
The blue mussel (Mytilus edulis) has recently expanded its northern distribution in the Arctic and is therefore considered to be a sensitive indicator of climate changes in this region. In this study, we compared aerobic performance of blue mussels from High Arctic, Subarctic and temperate populations at different temperatures. Standard metabolic rates (SMR) and active metabolic rates (AMR) were measured for each population, and absolute (AMR − SMR) and factorial (\(\frac{AMR}{SMR}\)) scopes were calculated. Blue mussels from the temperate population had the lowest Q10 (= 1.8) and the largest thermal window (−1 to 25 °C), whereas Q10 values in the Arctic populations were 1.9 (Subarctic) and 2.3 (High Arctic), with a thermal window of −1 to 21 °C. Aerobic scope increased with rising temperatures, reaching a maximum at 14 °C (temperate) and 7 °C (Subarctic and High Arctic, respectively), after which a decrease was observed at temperatures exceeding 14 °C. At low temperatures (−1 °C), the average SMR of the High Arctic population was 93 % higher than that of the temperate population and 22 % higher than that of the Subarctic population. Combined, our results demonstrate physiological adaptation and plasticity of blue mussels across latitudes spanning from 56 to 77ºN. This indicates that low ocean temperature per se does not constrain metabolic activity of Mytilus in the Arctic; rather, we speculate that maturation of reproductive tissues, larval supply and annual energy budgets are the most relevant factors influencing Mytilus populations near their northern distributional edge in the Arctic.
Similar content being viewed by others
References
Addo-Bediako A, Chown SL, Gaston KJ (2002) Metabolic cold adaptation in insects: a large-scale perspective. Funct Ecol 16:332–338. doi:10.1046/j.1365-2435.2002.00634.x
Begum S, Basova L, Strahl J, Sukhotin A, Heilmayer O, Philipp E, Brey T, Abele D (2009) A metabolic model for the ocean quahog Arctica islandica—effects of animal mass and age, temperature, salinity, and geography on respiration rate. J Shellfish Res 28:533–539. doi:10.2983/035.028.0315
Berge J, Johnsen G, Nilsen F, Gulliksen B, Slagstad D (2005) Ocean temperature oscillations enable reappearance of blue mussels Mytilus edulis in Svalbard after a 1000 year absence. Mar Ecol Prog Ser 303:167–175. doi:10.3354/Meps303167
Both C, van Asch M, Bijlsma RG, van den Burg AB, Visser ME (2009) Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J Anim Ecol 78:73–83. doi:10.1111/j.1365-2656.2008.01458.x
Bradshaw WE, Holzapfel CM (2001) Genetic shift in photoperiodic response correlated with global warming. Proc Natl Acad Sci USA 98:14509–14511. doi:10.1073/Pnas.241391498
CAFF (2013) Arctic biodiversity assessment—status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri, p 678
Clarke A (1980) A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol J Linn Soc 14:77–92. doi:10.1111/j.1095-8312.1980.tb00099.x
Clarke A (1987) Temperature, latitude and reproductive effort. Mar Ecol Prog Ser 38:89–99. doi:10.3354/Meps038089
Clarke A (1993) Seasonal acclimatization and latitudinal compensation in metabolism - do they exist. Funct Ecol 7:139–149. doi:10.2307/2389880
Clarke A (2003) Costs and consequences of evolutionary temperature adaptation. Trends Ecol Evol 18:573–581. doi:10.1016/j.tree.2003.08.007
Clarke A, Fraser KPP (2004) Why does metabolism scale with temperature? Funct Ecol 18:243–251. doi:10.1111/J.0269-8463.2004.00841.X
Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905. doi:10.1046/j.1365-2656.1999.00337.x
Davenport J (2000) Antarctic ecosystems: models for wider ecological understanding. Caxton Press, Christchurch, p 332
Doucet-Beaupre H, Dube C, Breton S, Pörtner HO, Blier PU (2010) Thermal sensitivity of metabolic enzymes in subarctic and temperate freshwater mussels (Bivalvia: Unionoida). J Therm Biol 35:11–20. doi:10.1016/j.jtherbio.2009.10.002
Gaffney PM, Diehl WJ (1986) Growth, condition and specific dynamic action in the mussel Mytilus edulis recovering from starvation. Mar Biol 93:401–409. doi:10.1007/Bf00401108
Hamburger K, Mohlenberg F, Randlov A, Riisgård HU (1983) Size, oxygen consumption and growth in the mussel Mytilus edulis. Mar Biol 75:303–306. doi:10.1007/Bf00406016
Hatcher A, Grant J, Schofield B (1997) Seasonal changes in the metabolism of cultured mussels (Mytilus edulis L.) from a Nova Scotian inlet: the effects of winter ice cover and nutritive stress. J Exp Mar Biol Ecol 217:63–78. doi:10.1016/S0022-0981(97)00042-7
Hjort C, Funder S (1974) The subfossil occurrence of Mytilus edulis L. in central East Greenland. Boreas 3:23–33. doi:10.1111/j.1502-3885.1974.tb00664.x
Holeton GF (1974) Metabolic cold adaptation of polar fish - fact or artifact. Physiol Zool 47:137–152
IPCC (2014) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O. Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R. Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge, pp 1132
Jansen JM, Pronker AE, Kube S, Sokolowski A, Sola JC, Marquiegui MA, Schiedek D, Bonga SW, Wolowicz M, Hummel H (2007) Geographic and seasonal patterns and limits on the adaptive response to temperature of European Mytilus spp. and Macoma balthica populations. Oecologia 154:23–34. doi:10.1007/S00442-007-0808-X
Johnston IA, Calvo J, Guderley H, Fernandez D, Palmer L (1998) Latitudinal variation in the abundance and oxidative capacities of muscle mitochondria in perciform fishes. J Exp Biol 201:1–12
Jones SJ, Lima FP, Wethey DS (2010) Rising environmental temperatures and biogeography: poleward range contraction of the blue mussel, Mytilus edulis L., in the western Atlantic. J Biogeogr 37:2243–2259. doi:10.1111/j.1365-2699.2010.02386.x
Jørgensen BB, Richardson K (1996) Eutrophication in coastal marine ecosystems. American Geophysical Union, Washington, D. C, p 267
Krause-Jensen D, Marba N, Olesen B, Sejr MK, Christensen PB, Rodrigues J, Renaud PE, Balsby TJS, Rysgaard S (2012) Seasonal sea ice cover as principal driver of spatial and temporal variation in depth extension and annual production of kelp in Greenland. Global Change Biol 18:2981–2994. doi:10.1111/J.1365-2486.2012.02765.X
Krogh A (1916) The respiratory exchange of animals and man. Longman, London, p 190
Lannig G, Eckerle LG, Serendero I, Sartoris FJ, Fischer T, Knust R, Johansen T, Pörtner HO (2003) Temperature adaptation in eurythermal cod (Gadus morhua): a comparison of mitochondrial enzyme capacities in boreal and Arctic populations. Mar Biol 142:589–599. doi:10.1007/S00227-002-0967-6
Livermore R, Eagles G, Morris P, Maldonado A (2004) Shackleton fracture zone: no barrier to early circumpolar ocean circulation. Geology 32:797–800. doi:10.1130/g20537.1
Munday PL, Jones GP, Pratchett MS, Williams AJ (2008) Climate change and the future for coral reef fishes. Fish Fish 9:261–285. doi:10.1111/j.1467-2979.2008.00281.x
Newell RC, Pye VI (1970) Seasonal changes in the effect of temperature on the oxygen consumption of the winkle Littorina littorea (L.) and the mussel Mytilus edulis L. Comp Biochem Physiol 34:367–383. doi:10.1016/0010-406X(70)90178-7
Nguyen KDT, Morley SA, Lai CH, Clark MS, Tan KS, Bates AE, Peck LS (2011) Upper temperature limits of tropical marine ectotherms: Global warming implications. Plos One 6 doi:10.1371/journal.pone.0029340
Nielsen MG, Elmes GW, Kipyatkov VE (1999) Respiratory Q10 varies between populations of two species of Myrmica ants according to the latitude of their sites. J Insect Physiol 45:559–564. doi:10.1016/S0022-1910(98)00162-0
Olesen B, Krause-Jensen D, Marbà N, Christensen PB (2014) Eelgrass (Zostera marina L.) in subarctic Greenland: dense meadows with slow biomass turnover. Mar Ecol Prog Ser In review
Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biol 13:1860–1872. doi:10.1111/j.1365-2486.2007.01404.x
Peck LS (2005) Prospects for survival in the Southern Ocean: vulnerability of benthic species to temperature change. Antarct Sci 17:497–507. doi:10.1017/S0954102005002920
Peck LS, Conway LZ (2000) The myth of metabolic cold adaptation: oxygen consumption in stenothermal Antarctic bivalves. Geol Soc Spec Publ 177:441–450. doi:10.1144/Gsl.Sp.2000.177.01.29
Peck LS, Clark MS, Morley SA, Massey A, Rossetti H (2009a) Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct Ecol 23:248–256. doi:10.1111/j.1365-2435.2008.01537.x
Peck LS, Massey A, Thorne MAS, Clark MS (2009b) Lack of acclimation in Ophionotus victoriae: brittle stars are not fish. Polar Biol 32:399–402. doi:10.1007/s00300-008-0532-y
Peck LS, Morley SA, Richard J, Clark MS (2014) Acclimation and thermal tolerance in Antarctic marine ectotherms. J Exp Biol 217:16–22. doi:10.1242/jeb.089946
Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve species from different thermal habitats: energetics and remodelling of membrane lipids. J Exp Biol 210:2999–3014. doi:10.1242/Jeb.006007
Perry AL, Low PJ, Ellis JR, Reynolds JD (2005) Climate change and distribution shifts in marine fishes. Science 308:1912–1915. doi:10.1126/science.1111322
Pörtner HO (2002a) Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comp Biochem Physiol A Physiol 132:739–761. doi:10.1016/S1095-6433(02)00045-4
Pörtner HO (2002b) Physiological basis of temperature-dependent biogeography: trade-offs in muscle design and performance in polar ectotherms. J Exp Biol 205:2217–2230
Pörtner HO (2006) Climate-dependent evolution of Antarctic ectotherms: an integrative analysis. Deep-Sea Res Part II 53:1071–1104. doi:10.1016/J.Dsr2.2006.02.015
Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. doi:10.1126/science.1163156
Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315:95–97. doi:10.1126/science.1135471
Pörtner HO, Playle RC (1998) Cold ocean physiology. Cambridge University Press, Cambridge, p 498
Ricciardi A, Bourget E (1998) Weight-to-weight conversion factors for marine benthic macroinvertebrates. Mar Ecol Prog Ser 163:245–251. doi:10.3354/Meps163245
Riisgård HU, Randlov A (1981) Energy budgets, growth and filtration rates in Mytilus edulis at different algal concentrations. Mar Biol 61:227–234. doi:10.1007/Bf00386664
Schaefer J, Walters A (2010) Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex. Funct Ecol 24:1087–1094. doi:10.1111/j.1365-2435.2010.01726.x
Scholander PF, Flagg W, Walters V, Irving L (1953) Climatic adaptation in Arctic and tropical poikilotherms. Physiol Zool 26:67–92
Sejr MK, Petersen JK, Jensen KT, Rysgaard S (2004) Effects of food concentration on clearance rate and energy budget of the Arctic bivalve Hiatella arctica (L) at subzero temperature. J Exp Mar Biol Ecol 311:171–183. doi:10.1016/j.jembe.2004.05.005
Sejr MK, Blicher ME, Rysgaard S (2009) Sea ice cover affects inter-annual and geographic variation in growth of the Arctic cockle Clinocardium ciliatum (Bivalvia) in Greenland. Mar Ecol Prog Ser 389:149–158. doi:10.3354/Meps08200
Serreze MC, Barrett AP, Stroeve JC, Kindig DN, Holland MM (2009) The emergence of surface-based Arctic amplification. Cryosphere 3:11–19. doi:10.5194/tc-3-11-2009
Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Cruz MVS, Lara-Resendiz R, Martinez-Mendez N, Calderon-Espinosa ML, Meza-Lazaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibarguengoytia N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899. doi:10.1126/science.1184695
Somero GN, Devries AL (1967) Temperature tolerance of some Antarctic fishes. Science 156:257–258. doi:10.1126/science.156.3772.257
Sommer AM, Pörtner HO (2002) Metabolic cold adaptation in the lugworm Arenicola marina: comparison of a North Sea and a White Sea population. Mar Ecol Prog Ser 240:171–182. doi:10.3354/Meps240171
Stillman JH (2003) Acclimation capacity underlies susceptibility to climate change. Science 301:65. doi:10.1126/science.1083073
Sukhotin AA, Abele D, Pörtner HO (2006) Ageing and metabolism of Mytilus edulis: populations from various climate regimes. J Shellfish Res 25:893–899. doi:10.2983/0730-8000
Terblanche JS, Clusella-Trullas S, Deere JA, Van Vuuren BJ, Chown SL (2009) Directional evolution of the slope of the metabolic rate – temperature relationship is correlated with climate. Physiol Biochem Zool 82:495–503. doi:10.1086/605361
Theisen BF (1973) The growth of Mytilus edulis L. (bivalvia) from Disko and Thule district, Greenland. Ophelia 12:19
Thompson RJ, Bayne BL (1972) Active metabolism associated with feeding in the mussel Mytilus edulis L. J Exp Mar Biol Ecol 9:111–124. doi:10.1016/0022-0981(72)90011-1
Thompson RJ, Bayne BL (1974) Some relationships between growth, metabolism and food in the mussel Mytilus edulis. Mar Biol 27:317–326. doi:10.1007/BF00394367
Thorarinsdottir GG, Gunnarsson K (2003) Reproductive cycles of Mytilus edulis L. on the west and east coasts of Iceland. Polar Res 22:217–223. doi:10.1111/j.1751-8369.2003.tb00108.x
Torres JJ, Somero GN (1988) Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar Biol 98:169–180. doi:10.1007/Bf00391192
Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395. doi:10.1038/416389a
Watson S-A, Morley S, Bates A, Clark M, Day R, Lamare M, Martin S, Southgate P, Tan K, Tyler P, Peck L (2014) Low global sensitivity of metabolic rate to temperature in calcified marine invertebrates. Oecologia 174:45–54. doi:10.1007/s00442-013-2767-8
Wernberg T, Smale DA, Tuya F, Thomsen MS, Langlois TJ, de Bettignies T, Bennett S, Rousseaux CS (2013) An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat Clim Change 3:78–82. doi:10.1038/Nclimate1627
Węsławski JM, Kendall MA, Włodarska-Kowalczuk M, Iken K, Kędra M, Legezynska J, Sejr MK (2011) Climate change effects on Arctic fjord and coastal macrobenthic diversity—observations and predictions. Mar Biodiv 41:71–85. doi:10.1007/s12526-010-0073-9
White CR, Alton LA, Frappell PB (2012) Metabolic cold adaptation in fishes occurs at the level of whole animal, mitochondria and enzyme. Proc R Soc B-Biol Sci 279:1740–1747. doi:10.1098/rspb.2011.2060
Wohlschlag DE (1960) Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecology 41:287–292. doi:10.2307/1930217
Zwerschke N, Bollen M, Molis M, Scrosati R (2013) An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients. Helgol Mar Res 67:663–674. doi:10.1007/s10152-013-0352-5
Acknowledgments
The study was financially supported by the 15 June Foundation. JT was supported by the Commission for Scientific Research in Greenland and Aase og Jørgens Münter’s Foundation. The authors wish to thank Kattegatcentret for providing filtrated seawater. We gratefully acknowledge the contributions of Arctic Research Centre (ARC), Aarhus University. SR was supported by the Canada Excellence Research Chair (CERC). This work is a contribution to the Arctic Science Partnership (ASP) asp-net.org.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by H. Pörtner.
Rights and permissions
About this article
Cite this article
Thyrring, J., Rysgaard, S., Blicher, M.E. et al. Metabolic cold adaptation and aerobic performance of blue mussels (Mytilus edulis) along a temperature gradient into the High Arctic region. Mar Biol 162, 235–243 (2015). https://doi.org/10.1007/s00227-014-2575-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00227-014-2575-7