Advertisement

Marine Biology

, Volume 161, Issue 12, pp 2885–2895 | Cite as

Growth and production of new recruits and adult individuals of Ascophyllum nodosum in a non-harvested population at its southern limit (Galicia, NW Spain)

  • Inés G. Viana
  • Antonio Bode
  • Consolación Fernández
Original Paper

Abstract

Populations near the geographic distribution limits of the species are considered to live under suboptimal conditions, and hence, slight environmental changes can be critical for their survival. The potential sensitivity to disturbances of the long-living macroalga Ascophyllum nodosum was analyzed by the determination of growth, recruitment, mortality, and production of biomass of a population near its southern distribution limit. Recruitment, survival and growth rates of <2 years old individuals were determined in a new population growing in experimentally denudated squares. Demographic data for >2 years old individuals were obtained from individuals in the original population after estimating their age from the number of gas bladders in the thallus. Growth and survival were described as continuous nonlinear functions of age applied to the population and were further used to make demography-based production estimates. Recruitment of A. nodosum in denudated substrates seemed to require a previous cover of other macroalgae (as Fucus vesiculosus) as the only cohort detected during the 26-month period of the study was observed after F. vesiculosus individuals started to increase. The low production estimates (2,033 g m−2 for a 10 year period) and poor recruitment may indicate a slow recuperation of this population to denudation. However, the large variability observed in the estimated growth curves of different populations along this southern distribution area suggests a large influence of local conditions that may help to overcome environmental changes at regional scales.

Keywords

Macroalgae Adult Individual Original Population Brown Seaweed Southern Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank A.F. Lamas and J. Varela for assistance in the samplings. We also acknowledge the comments and suggestions of three anonymous reviewers that greatly contributed to improve the manuscript. This research was funded by project ANILE (CTM2009-08396 and CTM2010-09904-E) of the Plan Nacional de I+D+I (Spain). I.G.V. was supported by a FPI fellowship from Ministerio de Economía y Competitividad (Spain).

References

  1. Åberg P (1992) A demographic study of two populations of the seaweed Ascophyllum nodosum. Ecology 73:1473–1487CrossRefGoogle Scholar
  2. Alcock R (2003) The effect of climate change on rocky shore communities in the Bay of Biscay, 1895–2050. Dissertation, University of SouthamptonGoogle Scholar
  3. Anadón R, Niell FX (1981) Distribución longitudinal de macrófitos en la costa asturiana (N de España). Invest Pesq 45:143–156Google Scholar
  4. Angert AL (2009) The niche, limits to species’ distributions, and spatiotemporal variation in demography across the elevation ranges of two monkeyflowers. PNAS 106:19693–19698CrossRefGoogle Scholar
  5. Araújo R, Bárbara I, Tibaldo M, Berecibar E, Díaz Tapia P, Pereira R, Santos R, Sousa Pinto I (2009) Checklist of benthic marine algae and cyanobacteria of northern Portugal. Bot Mar 52:24–46CrossRefGoogle Scholar
  6. Araújo RM, Serrão EA, Sousa-Pinto I, Åberg P (2014) Spatial and temporal dynamics of Fucoid populations (Ascophyllum nodosum and Fucus serratus): a comparison between central and range edge populations. PLoS ONE 9(3):e92177. doi: 10.1371/journal.pone.0092177 CrossRefGoogle Scholar
  7. Arístegui J, Alvarez-Salgado XA, Barton ED, Figueiras FG, Hernández-León S, Roy C, Santos AMP (2006) Chapter 23. Oceanography and fisheries of the Canary Current/Iberian region of the Eastern North Atlantic (18a, E). In: Robinson AR, Brink K (eds) The global coastal ocean: interdisciplinary regional studies and syntheses. Harvard University Press, Boston, pp 877–931Google Scholar
  8. Baardseth E (1955) Regrowth of Ascophyllum nodosum after harvesting. Institute for Industrial Research and Standards, DublinGoogle Scholar
  9. Baardseth E (1970) Synopsis of biological data on knobbed wrack Ascophyllum nodosum. FAO Fish Synop 38:1–40Google Scholar
  10. Bárbara I, Cremades J, Pérez-Cirera JL (1995) Zonación de la vegetación bentónica marina en la Ría de A Coruña (N.O. de España). Nova Acta Cient Compostel (Bioloxía) 5:5–23Google Scholar
  11. Bode A, Varela M, Prego R (2011) Continental and marine sources of organic matter and nitrogen for rías of northern Galicia (Spain). Mar Ecol Prog Ser 437:13–26CrossRefGoogle Scholar
  12. Cervin G, Lindegarth M, Viejo RM, Åberg P (2004) Effects of small-scale disturbances of canopy and grazing on intertidal assemblages on the Swedish west coast. J Exp Mar Biol Ecol 302:35–49CrossRefGoogle Scholar
  13. Cervin G, Åberg P, Jenkins SR (2005) Small-scale disturbance in a stable canopy dominated community: implications for macroalgal recruitment and growth. Mar Ecol Prog Ser 305:31–40CrossRefGoogle Scholar
  14. Chapman ARO (1995) Functional ecology of fucoid algae: twenty-three years of progress. Phycologia 34:1–32CrossRefGoogle Scholar
  15. Choi HG, Norton TA (2005) Competition and facilitation between germlings of Ascophyllum nodosum and Fucus vesiculosus. Mar Biol 147:525–532CrossRefGoogle Scholar
  16. Cousens R (1982) The effect of exposure to wave action on the morphology and pigmentation of Ascophyllum nodosum (L.) Le Jolis in south-eastern Canada. Bot Mar 25:191–195CrossRefGoogle Scholar
  17. Cousens R (1984) Estimation of annual production by the intertidal brown alga Ascophyllum nodosum (L.) Le Jolis. Bot Mar 27:217–227CrossRefGoogle Scholar
  18. Creed JC, Norton TA, Kain JM (1996) Are neighbours harmful or helpful in Fucus vesiculosus populations? Mar Ecol Prog Ser 133:191–201CrossRefGoogle Scholar
  19. Cremades J, Bárbara I, Veiga AJ (2004) Intertidal vegetation and its commercial potential on the shores of Galicia (NW Iberian Peninsula). Thalassas 20:69–80Google Scholar
  20. Crisp DJ (1971) Energy flow measurements. In: Holme A, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell, Oxford, pp 197–279Google Scholar
  21. David HM (1943) Studies in the autecology of Ascophyllum nodosum Le Jol. J Ecol 31:178–198CrossRefGoogle Scholar
  22. Dudgeon S, Petraitis PS (2001) Scale-dependent recruitment and divergence of intertidal communities. Ecology 82:991–1006CrossRefGoogle Scholar
  23. Dudgeon S, Petraitis PS (2005) First year demography of the foundation species, Ascophyllum nodosum, and its community implications. Oikos 109:405–415CrossRefGoogle Scholar
  24. Dudgeon S, Kübler JE, Wright WA, Vadas RL Sr, Petraitis PS (2001) Natural variability in zygote dispersal of Ascophyllum nodosum at small spatial scales. Funct Ecol 15:595–604CrossRefGoogle Scholar
  25. Fernández C (2011) The retreat of large brown seaweeds on the north coast of Spain: the case of Saccorhiza polyschides. Eur J Phycol 46:352–360CrossRefGoogle Scholar
  26. Grashoff K, Ehrhardt M, Kremling K (1983) Methods of seawater analysis. Verlag Chemie, WeinheimGoogle Scholar
  27. Ingólfsson A, Hawkins SJ (2008) Slow recovery from disturbance: a 20 year study of Ascophyllum canopy clearances. J Mar Biol Assoc UK 88:689–691CrossRefGoogle Scholar
  28. Jenkins SR, Hawkins SJ, Norton TA (1999) Direct and indirect effects of a macroalgal canopy and limpet grazing in structuring a sheltered inter-tidal community. Mar Ecol Prog Ser 188:81–92CrossRefGoogle Scholar
  29. Keser M, Larson BR (1984) Colonization and growth of Ascophyllum nodosum (Phaeophyta) in Maine. J Phycol 20:83–87CrossRefGoogle Scholar
  30. Keser M, Vadas RL, Larson BR (1981) Regrowth of Ascophyllum nodosum and Fucus vesiculosus under various harvesting regimes in Maine, U.S.A. Bot Mar 24:29–38CrossRefGoogle Scholar
  31. Knight M, Parke M (1950) A biological study of Fucus vesiculosus L. and F. serratus L. J Mar Biol Assoc UK 29:439–515CrossRefGoogle Scholar
  32. Lamela-Silvarrey C, Fernández C, Anadón R, Arrontes J (2012) Fucoid assemblages on the north coast of Spain: past and present (1977–2007). Bot Mar 55:199–207CrossRefGoogle Scholar
  33. Lima FP, Ribeiro PA, Queiroz N, Hawkins SJ, Santos AM (2007) Do distributional shifts of northern and southern species of algae match the warming pattern? Glob Change Biol 13:2592–2604CrossRefGoogle Scholar
  34. Lüning K (1990) Seaweeds. Their environment, biogeography and ecophysiology. Willey Interscience, New YorkGoogle Scholar
  35. MacFarlane C (1932) Observations on the annual growth of Ascophyllum nodosum. Proc Nova Scot Inst Sci 18:27–32Google Scholar
  36. Mathieson AC, Shipman JW, O’Shea JR, Hasevlat RC (1976) Seasonal growth and reproduction of estuarine fucoid algae in New England. J Exp Mar Biol Ecol 25:273–284CrossRefGoogle Scholar
  37. Moss B (1970) Meristems and growth control in Ascophyllum nodosum (L.) Le Jol. New Phytol 69:253–260CrossRefGoogle Scholar
  38. NiCastro KR, Zardi GI, Teixeira S, Neiva J, Serrão EA, Pearson GA (2013) Shift happens: trailing edge contraction associated with recent warming trends threatens a distinct genetic lineage in the marine macroalga Fucus vesiculosus. BMC Biol 11:6CrossRefGoogle Scholar
  39. Niell FX (1977) Distribución y zonación de las algas bentónicas en las facies rocosas del sistema intermareal de las Rías Bajas Gallegas. Invest Pesq 41:219–237Google Scholar
  40. Niell FX (1979) Sobre la biología de Ascophyllum nodosum (L.) Le Jol. en Galicia. III. Biometría, crecimiento y producción. Invest Pesq 43:501–518Google Scholar
  41. Niell FX, Soneira A (1976) Sobre la biología de Ascophyllum nodosum (L.) Le Jolis, en Galicia II. Biomasa total, estival, en la ría de Vigo. Invest Pesq 40:105–110Google Scholar
  42. Peckol P, Harlin MM, Krumscheid P (1988) Physiological and population ecology of intertidal and subtidal Ascophyllum nodosum (Phaeophyta). J Phycol 24:192–198CrossRefGoogle Scholar
  43. Sánchez I, Fernández C (2006) Resource availability and invasibility in an intertidal macroalgal assemblage. Mar Ecol Prog Ser 313:85–94CrossRefGoogle Scholar
  44. Schonbeck MW, Norton TA (1980) Factors controlling the lower limits of fucoid algae on the shore. J Exp Mar Biol Ecol 43:131–150CrossRefGoogle Scholar
  45. Sharp G (1987) Ascophyllum nodosum and its harvesting in Eastern Canada. In: Doty MS, Caddy JF, Santelices B (eds) Case studies of seven commercial seaweed resources. FAO Fisheries Tech Paper 281, pp 3–46Google Scholar
  46. Steen H, Rueness J (2004) Comparison of survival and growth in germlings of six fucoid species (Fucales, Phaeophyceae) at two different temperature and nutrient levels. Sarsia 89:175–183CrossRefGoogle Scholar
  47. Stengel DB, Dring MJ (1997) Morphology and in situ growth rates of plants of Ascophyllum nodosum (Phaeophyta) from different shore levels and responses of plants to vertical transplantation. Eur J Phycol 32:193–202CrossRefGoogle Scholar
  48. Strömgren T (1986) Annual variation in growth rate of perennial littoral fucoid algae from the west coast of Norway. Aquat Bot 23:361–369CrossRefGoogle Scholar
  49. Svensson CJ, Pavia H, Åberg P (2009) Robustness in life history of the brown seaweed Ascophyllum nodosum (Fucales, Phaeophyceae) across large scales: effects of spatially and temporally induced variability on population growth. Mar Biol 156:1139–1148CrossRefGoogle Scholar
  50. Vadas RL, Wright WA, Miller SL (1990) Recruitment of Ascophyllum nodosum: wave action as a source of mortality. Mar Ecol Prog Ser 61:263–272CrossRefGoogle Scholar
  51. Vadas RL Sr, Johnson S, Norton TA (1992) Recruitment and mortality of early post-settlement stages of benthic algae. Br Phycol J 27:331–351CrossRefGoogle Scholar
  52. Varela M, Prego R, Canle M, Lorenzo J (1994) The Ria de La Coruña, is hydrologically a ria? Gaia: Revista de Geociências 9:3–5Google Scholar
  53. Viejo RM, Åberg P, Cervin G, Lindegarth M (1999) The interactive effects of adult canopy, germling density and grazing on germling survival of the rockweed Ascophyllum nodosum. Mar Ecol Prog Ser 187:113–120CrossRefGoogle Scholar
  54. Viana IG, Fernández C, Bode A (in review) Ecology of Fucus vesiculosus (Phaeophyceae) at its southern limit of distribution: Growth and production of the early stages of development. Eur J PhycolGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Inés G. Viana
    • 1
  • Antonio Bode
    • 1
  • Consolación Fernández
    • 2
  1. 1.Instituto Español de Oceanografía, Centro Oceanográfico de A CoruñaA CoruñaSpain
  2. 2.Unidad de Ecología, Departamento de Biología de Organismos y SistemasUniversidad de OviedoOviedoSpain

Personalised recommendations