Advertisement

Marine Biology

, Volume 161, Issue 11, pp 2621–2629 | Cite as

Biomineralisation during operculum regeneration in the polychaete Spirobranchus lamarcki

  • Réka Szabó
  • Angus C. Calder
  • David E. K. Ferrier
Original Paper

Abstract

Formation of calcified biominerals is widespread in marine animals and is often associated with important elements of their biology, such as support and protection. Serpulid polychaetes are relatively understudied examples of biomineralisation despite their prominence in many marine ecosystems. An investigation of calcification in the regenerating opercular plate of the serpulid polychaete Spirobranchus (formerly Pomatoceros) lamarcki was performed using optical microscopy, calcein labelling and powder diffraction analysis. Worms were collected between January 2012 and June 2013 from East Sands beach, St Andrews, Scotland (56.33°N, 2.78°W). The earliest visible signs of calcification were birefringent grains. Later-stage regenerates displayed a complex mixture of calcified structures including grains, round, smooth tiles, and larger tiles with a rugged appearance. The plate matures by the growth and eventual merging of tiles into a contiguous crust. Calcein pulse-chase experiments showed the progression of calcification from the centre towards the edge of the plate, and powder diffraction analysis of three regenerative stages revealed a major shift in mineralogy from a predominantly calcitic to a predominantly aragonitic composition. The mechanisms underlying the shift are currently unknown. These are the first mineralogical data comparing different developmental stages in a serpulid operculum and contribute to the understanding of biomineralisation in this group.

Keywords

Calcite Differential Interference Contrast Calcify Structure Amorphous Precursor Calcify Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank the members of the Ferrier and Somorjai labs for discussions. RS was supported by a Carnegie Scholarship.

References

  1. Addadi L, Raz S, Weiner S (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15:959–970. doi: 10.1002/adma.200300381 CrossRefGoogle Scholar
  2. Addadi L, Joester D, Nudelman F, Weiner S (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry 12:980–987. doi: 10.1002/chem.200500980 CrossRefGoogle Scholar
  3. Aizenberg J, Addadi L, Weiner S, Lambert G (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates. Adv Mater 8:222–226. doi: 10.1002/adma.19960080307 CrossRefGoogle Scholar
  4. Beniash E, Aizenberg J, Addadi L, Weiner S (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc B 264:461–465. doi: 10.1098/rspb.1997.0066 CrossRefGoogle Scholar
  5. Beniash E, Metzler RA, Lam RSK, Gilbert PUPA (2009) Transient amorphous calcium phosphate in forming enamel. J Struct Biol 166:133–143. doi: 10.1016/j.jsb.2009.02.001 CrossRefGoogle Scholar
  6. Bosence DWJ (1973) Recent serpulid reefs, Connemara, Eire. Nature 242:40–41. doi: 10.1038/242040b0 CrossRefGoogle Scholar
  7. Bubel A (1983) A fine structural study of the calcareous opercular plate and associated cells a polychaete annelid. Tissue Cell 15:457–476. doi: 10.1016/0040-8166(83)90076-9 CrossRefGoogle Scholar
  8. Bubel A, Thorp CH, Moore MN (1980) An histological, histochemical and ultrastructural study of the operculum of the serpulid Pomatoceros triqueter L. with particular reference to the formation of the calcareous opercular plate during opercular regeneration. In: Oxley TA, Becker G, Allsopp D (eds) Biodeterioration: the proceedings of the fourth international biodeterioration symposium. Biodeterioration Society, London, pp 275–290Google Scholar
  9. Bubel A, Stephens RM, Fenn RH, Fieth P (1983) An electron microscope, X-ray diffraction and amino acid analysis study of the opercular filament cuticle, calcareous opercular plate and habitation tube of Pomatoceros lamarckii Quatrefages (Polychaeta: Serpulidae). Comp Biochem Physiol B 74:837–850. doi: 10.1016/0305-0491(83)90155-4 Google Scholar
  10. Bubel A, Thorp CH, Fenn RH, Livingstone D (1985) Opercular regeneration in Pomatoceros lamarckii Quatrefages (Polychaeta: Serpulidae). Differentiation of the operculum and deposition of the calcareous opercular plate. J Zool 1:49–94. doi: 10.1111/j.1469-7998.1985.tb00068.x CrossRefGoogle Scholar
  11. Cameron CB, Bishop CD (2012) Biomineral ultrastructure, elemental constitution and genomic analysis of biomineralization-related proteins in hemichordates. Proc R Soc B 279:3041–3048. doi: 10.1098/rspb.2012.0335 CrossRefGoogle Scholar
  12. Cartwright JHE, Checa AG, Gale JD et al (2012) Calcium carbonate polyamorphism and its role in biomineralization: how many amorphous calcium carbonates are there? Angew Chem Int Ed 51:11960–11970. doi: 10.1002/anie.201203125 CrossRefGoogle Scholar
  13. Chan VBS, Thiyagarajan V, Lu XW et al (2013) Temperature dependent effects of elevated CO2 on shell composition and mechanical properties of Hydroides elegans: insights from a multiple stressor experiment. PLoS ONE 8:e78945. doi: 10.1371/journal.pone.0078945 CrossRefGoogle Scholar
  14. Chave KE (1952) A solid solution between calcite and dolomite. J Geol 60:190–192. doi: 10.1086/625949 CrossRefGoogle Scholar
  15. Cheng C, Shao Z, Vollrath F (2008) Silk fibroin-regulated crystallization of calcium carbonate. Adv Funct Mater 18:2172–2179. doi: 10.1002/adfm.200701130 CrossRefGoogle Scholar
  16. Fornós JJ, Forteza V, Martínez-Taberner A (1997) Modern polychaete reefs in Western Mediterranean lagoons: Ficopomatus enigmaticus (Fauvel) in the Albufera of Menorca, Balearic Islands. Palaeogeogr Palaeoclimatol Palaeoecol 128:175–186. doi: 10.1016/S0031-0182(96)00045-4 CrossRefGoogle Scholar
  17. Hedley RH (1958) Tube formation by Pomatoceros triqueter (Polychaeta). J Mar Biol Assoc UK 37:315–322. doi: 10.1017/S0025315400023717 CrossRefGoogle Scholar
  18. Huang Y-C, Mou Y, Tsai TW-T et al (2012) Calcium-43 NMR studies of polymorphic transition of calcite to aragonite. J Phys Chem B 116:14295–14301. doi: 10.1021/jp309923p CrossRefGoogle Scholar
  19. Kirschvink JL, Lowenstam HA (1979) Mineralization and magnetization of chiton teeth: paleomagnetic, sedimentologic, and biologic implications of organic magnetite. Earth Planet Sci Lett 44:193–204. doi: 10.1016/0012-821X(79)90168-7 CrossRefGoogle Scholar
  20. Knoll AH (2003) Biomineralization and evolutionary history. Rev Miner Geochem 54:329–356. doi: 10.2113/0540329 CrossRefGoogle Scholar
  21. Lowenstam HA, Weiner S (1989) On biomineralization. Oxford University Press, New YorkGoogle Scholar
  22. Marin F, Luquet G, Marie B, Medakovic D (2007) Molluscan shell proteins: primary structure, origin, and evolution. In: Schatten Gerald P (ed) Current topics in developmental biology, vol 80. Academic Press, New York, pp 209–276Google Scholar
  23. Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci (Schol Ed) 4:1099–1125. doi: 10.2741/S321 CrossRefGoogle Scholar
  24. Medaković D, Popović S, Gržeta B et al (1997) X-ray diffraction study of calcification processes in embryos and larvae of the brooding oyster Ostrea edulis. Mar Biol 129:615–623. doi: 10.1007/s002270050204 CrossRefGoogle Scholar
  25. R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. http://www.R-project.org/
  26. Ries JB (2011) Skeletal mineralogy in a high-CO2 world. J Exp Mar Biol Ecol 403:54–64. doi: 10.1016/j.jembe.2011.04.006 CrossRefGoogle Scholar
  27. Ries JB, Cohen AL, McCorkle DC (2009) Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37:1131–1134. doi: 10.1130/G30210A.1 CrossRefGoogle Scholar
  28. Smith AM, McGourty CR, Kregting L, Elliot A (2005) Subtidal Galeolaria hystrix (Polychaeta: Serpulidae) reefs in Paterson Inlet, Stewart Island, New Zealand. NZ J Mar Freshw Res 39:1297–1304. doi: 10.1080/00288330.2005.9517394 CrossRefGoogle Scholar
  29. Smith AM, Riedi MA, Winter DJ (2013) Temperate reefs in a changing ocean: skeletal carbonate mineralogy of serpulids. Mar Biol 160:2281–2294. doi: 10.1007/s00227-013-2210-z CrossRefGoogle Scholar
  30. Szabó R, Ferrier DEK (2014) Cell proliferation dynamics in regeneration of the operculum head appendage in the annelid Pomatoceros lamarckii. J Exp Zool (Mol Dev Evol) 322B:257–268. doi: 10.1002/jez.b.22572 CrossRefGoogle Scholar
  31. Tanur AE, Gunari N, Sullan RMA et al (2010) Insights into the composition, morphology, and formation of the calcareous shell of the serpulid Hydroides dianthus. J Struct Biol 169:145–160. doi: 10.1016/j.jsb.2009.09.008 CrossRefGoogle Scholar
  32. Taylor PD, Kudryavtsev AB, Schopf JW (2008) Calcite and aragonite distributions in the skeletons of bimineralic bryozoans as revealed by Raman spectroscopy. Invert Biol 127:87–97. doi: 10.1111/j.1744-7410.2007.00106.x CrossRefGoogle Scholar
  33. Thomas JG (1940) Pomatoceros, Sabella and Amphitrite. University Press of Liverpool, LiverpoolGoogle Scholar
  34. Vinn O (2013) On the unique isotropic aragonitic tube microstructure of some serpulids (Polychaeta, Annelida). J Morphol 274:478–482. doi: 10.1002/jmor.20112 CrossRefGoogle Scholar
  35. Vinn O, ten Hove HA (2011) Microstructure and formation of the calcareous operculum in Pyrgopolon ctenactis and Spirobranchus giganteus (Annelida, Serpulidae). Zoomorphology 130:181–188. doi: 10.1007/s00435-011-0133-0 CrossRefGoogle Scholar
  36. Vinn O, Jäger M, Kirsimäe K (2008a) Microscopic evidence of serpulid affinities of the problematic fossil tube “Serpula” etalensis from the Lower Jurassic of Germany. Lethaia 41:417–421. doi: 10.1111/j.1502-3931.2008.00093.x CrossRefGoogle Scholar
  37. Vinn O, ten Hove HA, Mutvei H, KirsimäE K (2008b) Ultrastructure and mineral composition of serpulid tubes (Polychaeta, Annelida). Zool J Linn Soc 154:633–650. doi: 10.1111/j.1096-3642.2008.00421.x CrossRefGoogle Scholar
  38. Vinn O, Mutvei H, ten Hove HA, Kirsimäe K (2008c) Unique Mg-calcite skeletal ultrastructure in the tube of the serpulid polychaete Ditrupa. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen 248:79–89. doi: 10.1127/0077-7749/2008/0248-0079 CrossRefGoogle Scholar
  39. Vinn O, Kirsimäe K, ten Hove HA (2009) Tube ultrastructure of Pomatoceros americanus (Polychaeta, Serpulidae): implications for the tube formation of serpulids. Estonian J Earth Sci 58:148–152CrossRefGoogle Scholar
  40. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491. doi: 10.1002/jez.90004 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Réka Szabó
    • 1
  • Angus C. Calder
    • 2
  • David E. K. Ferrier
    • 1
  1. 1.Gatty Marine Laboratory, The Scottish Oceans InstituteUniversity of St AndrewsSt Andrews, FifeUK
  2. 2.Department of Earth and Environmental Sciences, Irvine Building, The School of Geography and GeosciencesUniversity of St AndrewsFifeUK

Personalised recommendations