Marine Biology

, Volume 161, Issue 10, pp 2371–2380 | Cite as

Reproductive ecology of a hippolytid shrimp, Lebbeus virentova (Caridea: Hippolytidae) at the Von Damm Vent Field, Mid-Cayman Spreading Centre

  • Verity Nye
  • Jonathan T. Copley
Original Paper


Elucidation of life-history traits is essential to understand larval dispersal and population dynamics in marine benthic assemblages. This study is the first investigation of the life history of a recently described hippolytid shrimp from a deep-sea chemosynthetic environment, Lebbeus virentova Nye, Copley, Plouviez and Van Dover, 2013 at the Von Damm Vent Field (18°22N, 81°47W, ~2,300 m depth, Mid-Cayman Spreading Centre, Caribbean), using samples collected in February and June 2013. Lebbeus virentova is gonochoric and iteroparous. The sex ratio of L. virentova was significantly female biased (1:3) in February and June. The sampled population of L. virentova had a unimodal size–frequency distribution pattern in February and June, consistent with continuous recruitment and mortality. Continuous reproduction is indicated by a lack of synchrony in oocyte size–frequency distributions within both months, and asynchronous development of embryos among females, which may result in asynchronous larval release. A large embryo size in this species (2.65 ± 0.28 mm diameter) compared with other caridean shrimps suggests possible abbreviated larval development, as described in other species of the genus from non-chemosynthetic environments. Fecundity (26–94 embryos female−1) was lower and embryo size larger in L. virentova compared with alvinocaridids at chemosynthetic environments. This suggests that there are phylogenetic constraints on reproductive features of decapods at hydrothermal vents.


Carapace Length Hydrothermal Vent Ovigerous Female Oocyte Size Embryo Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank the Masters and ships’ companies, fellow scientists, and operators of the ‘Isis’ ROV and ‘Shinkai 6500’ HOV on the 82nd voyage of RRS ‘James Cook’ (chief scientist: Jon Copley) and voyage 13–05 of the RV ‘Yokosuka’ (chief scientist: Ken Takai). This work was supported by a UK Natural Environment Research Council award (NE/F017774/1) to J. Copley, P. Tyler, D. Connelly, B. Murton and K. Stansfield, which is gratefully acknowledged. This manuscript was improved following the comments of the Associate Editor and three anonymous reviewers, whose helpful suggestions are gratefully acknowledged.

Supplementary material

227_2014_2512_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
227_2014_2512_MOESM2_ESM.docx (13 kb)
Supplementary material 2 (DOCX 12 kb)
227_2014_2512_MOESM3_ESM.docx (2.1 mb)
Supplementary material 3 (DOCX 2187 kb)


  1. Ahyong ST (2009) New species and new records of hydrothermal vent shrimps from New Zealand (Caridea: Alvinocarididae, Hippolytidae). Crustaceana. doi: 10.1163/156854009X427333 Google Scholar
  2. Amon DJ, Glover AG, Wicklund H, Marsh L, Linse K, Rogers AD, Copley JT (2013) The discovery of a natural whale fall in the Antarctic deep sea. Deep Sea Res II. doi: 10.1016/j.dsr2.2013.01.028 Google Scholar
  3. Bauer RT (1989) Continuous reproduction and episodic recruitment in nine shrimp species inhabiting a tropical seagrass meadow. J Exp Mar Biol Ecol. doi: 10.1016/0022-0981(89)90183-4 Google Scholar
  4. Bauer RT (1991) Analysis of embryos production in a caridean shrimp guild from a tropical seagrass meadow. In: Wenner A, Kuris A (eds) Crustacean egg production. AA Balkema, Rotterdam, pp 181–191Google Scholar
  5. Bauer RT (1992) Testing generalisations about latitudinal; variation in reproduction and recruitment patterns with sicyoniid and caridean shrimp species. Invertebr Reprod Dev. doi: 10.1080/07924259.1992.9672272 Google Scholar
  6. Bauer RT (2000) Simultaneous hermaphroditism in caridean shrimps: a unique and puzzling sexual system in the Decapoda. J Crustac Biol 20:116–128Google Scholar
  7. Bauer RT (2004) Remarkable shrimps: adaptations and natural history of carideans. University of Oklahoma Press, NormanGoogle Scholar
  8. Bauer RT, VanHoy R (1996) Variation in sexual systems (protandry, gonochorism) and reproductive biology among three species of the shrimp genus Thor (Decapoda: Caridea). Bull Mar Sci 59:53–73Google Scholar
  9. Beaulieu SE, Baker ET, German CR, Maffei A (2013) An authoritative global database for active submarine hydrothermal vent fields. Geochem Geophys Geosyst. doi: 10.1002/2013GC004998 Google Scholar
  10. Beedessee G, Watanabe H, Ogura T, Nemoto S, Yahagi T, Nakagawa S, Nakamura K, Takai K, Koonjul M, Marie DEP (2013) High connectivity of animal populations in deep-sea hydrothermal vent fields in the Central Indian ridge relevant to its geological setting. PLoS one. doi: 10.1371/journal.pone.0081570 Google Scholar
  11. Bergland A (1981) Sex dimorphism and skewed sex ratios in the prawn species Palaemon adspersus and P. squilla. Oikos. doi: 10.2307/3544440 Google Scholar
  12. Bracken HD, Toon A, Felder DL, Martin JW, Finley M, Rasmussen J, Palero F, Crandall KA (2009) The decapod tree of life: compiling the data and moving toward a consensus of decapod evolution. Arthropod Syst Phylogeny 67:99–116Google Scholar
  13. Carpenter A (1983) Population biology of the freshwater shrimp Paratya curvirostris (Heller, 1862) (Decapoda: Atyidae). NZ J Mar Freshw Res. doi: 10.1080/00288330.1983.9515992 Google Scholar
  14. Clarke A (1985) The reproductive biology of the polar hippolytid shrimp Chorismus antarticus at South Georgia. In: Gray JS, Christiansen ME (eds) Marine biology of polar regions and effects of stress on marine organisms. Wiley, New York, pp 237–245Google Scholar
  15. Cobos V, Díaz V, García-Raso JE, Manjón-Cabeza ME (2005) Insights on the female reproductive system in Hippolyte inermis: is this species really hermaphroditic? Invertebr Biol. doi: 10.1111/j.1744-7410.2005.00029.x Google Scholar
  16. Collins PC, Kennedy R, Van Dover CL (2012) A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal vent fauna. Mar Ecol Prog Ser. doi: 10.3354/meps09646 Google Scholar
  17. Collins PC, Kennedy B, Forde J, Patterson A, Copley J, Marsh L, Nye V, Boschen R, Fleming N, Ju SJ, Lindsay D, Watanabe H, Yamamoto H, Carlsson J, Thaler AD (2013) VentBase: developing a consensus among stakeholders in the deep-sea regarding environmental impact assessment for deep-sea mining. Mar Policy. doi: 10.1016/j.marpol.2013.03.002 Google Scholar
  18. Company J-B, Sarda F (2000) Growth parameters of deep-water decapod crustaceans in the northwestern Mediterranean Sea: a comparative approach. Mar Biol. doi: 10.1007/s002270050011 Google Scholar
  19. Connelly DP, Copley J, Murton BJ, Stansfield K, Tyler PA, German CR, Van Dover CL, Amon D, Furlong M, Grindlay N, Hayman N, Hühnerbach V, Judge M, Le Bas T, McPhail S, Meir A, Nakamura K, Nye V, Pebody M, Pedersen R, Plouviez S, Sands C, Searle RC, Stevenson P, Taws S, Wilcox S (2012) Hydrothermal vents on the world’s deepest seafloor spreading centre. Nat Commun. doi: 10.1038/ncomms1636 Google Scholar
  20. Copley J, Young CM (2006) Seasonality and zonation in the reproductive biology and population structure of the shrimp Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana Slope cold seep. Mar Ecol Prog Ser. doi: 10.3354/meps315199 Google Scholar
  21. Copley JTP, Jorgensen PBK, Sohn RA (2007) Assessment of decadal-scale ecological change at a deep Mid-Atlantic hydrothermal vent and reproductive time-series in the shrimp Rimicaris exoculata. J Mar Biol Assoc UK. doi: 10.1017/S0025315407056512 Google Scholar
  22. Cordes EE, Cunha MR, Galeron J, Mora C, Olu-Le Roy K, Sibuet M, Van Gaever S, Vanreusel A, Levin LA (2010) The influence of geological, geochemical, and biogenic habitat heterogeneity on seep biodiversity. Mar Ecol. doi: 10.1111/j.1439-0485.2009.00334.x Google Scholar
  23. Corey S, Reid DM (1991) Comparative fecundity of decapod crustaceans: I. The fecundity of thirty-three species of nine families of caridean shrimp. Crustaceana. doi: 10.1163/156854091X00056 Google Scholar
  24. Correa C, Thiel M (2003) Mating systems in caridean shrimp (Decapoda: Caridea) and their evolutionary consequences for sexual dimorphism and reproductive biology. Rev Chil De Hist Nat. doi: 10.4067/S0716-078X2003000200006 Google Scholar
  25. Desbruyères D, Segonzac M, Bright M (2006) Handbook of deep-sea hydrothermal vent fauna. Biologiezentrum der Oberosterreichische Landesmuseen, ViennaGoogle Scholar
  26. Díaz H, Conde JE (1989) Population dynamics and life history of the mangrove crab Aratus pisonii (Brachyura, Grapsidae) in a marine environment. Bull Mar Sci 45:148–163Google Scholar
  27. Dobkin SR (1969) Abbreviated larval development in caridean shrimps and its significance in the artificial culture of these animals. FAO Fish Rep 57:935–946Google Scholar
  28. Espinoza-Fuenzalida NL, Thiel M, Dupre E, Baez JA (2008) Is Hippolyte williamsi gonochoric or hermaphroditic? A multi-approach study and review of sexual systems in Hippolyte shrimps. Mar Biol. doi: 10.1007/s00227-008-1059-z Google Scholar
  29. Ewald JJ (1969) Observations on the biology of Tozeuma carolinense (Decapoda, Hippolytidae) from Florida, with special reference to larval development. Bull Mar Sci 19:510–549Google Scholar
  30. Gebruk AV, Pimenov NV, Savvichev AS (1993) Feeding specialization of bresiliid shrimps in the TAG site hydrothermal community. Mar Ecol Prog Ser. doi: 10.3354/meps098247 Google Scholar
  31. Gebruk AV, Galkin SV, Vereshchaka AL, Moskalev LI, Southward AJ (1997) Ecology and biogeography of the hydrothermal vent fauna of the Mid-Atlantic Ridge. Adv Mar Biol. doi: 10.1016/S0065-2881(08)60016-4 Google Scholar
  32. Gebruk A, Fabri MC, Briand P, Desbruyères D (2010) Community dynamics over a decadal scale at Logatchev14°45ʹN, Mid-Atlantic Ridge. Cah Biol Mar 51:383–388Google Scholar
  33. German CR, Bowen A, Coleman ML, Honig DL, Huber KA, Jakuba MV, Kinsey JC, Kurz MD, Leroy S, McDermott JM, Mercier de Lepinay B, Nakamura K, Seewald JS, Smith JL, Sylva SP, Van Dover CL, Whitcomb LL, Yoerger DR (2010) Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc Natl Acad Sci. doi: 10.1073/pnas.1009205107 Google Scholar
  34. Hadfield MG, Strathman MF (1996) Variability, flexibility and plasticity in life histories of marine invertebrates. Oceanol Acta 19:323–334Google Scholar
  35. Hayman NW, Grindlay NR, Perfit MR, Mann P, Leroy S, de Lepinay BM (2011) Oceanic core complex development at the ultraslow spreading Mid-Cayman Spreading Center. Geochem Geophys Geosyst. doi: 10.1029/2010gc003240 Google Scholar
  36. Haynes E (1978) Description of larvae of a hippolytid shrimp, Lebbeus groenlandicus, reared in situ in Kachemak Bay, Alaska. Fish Bull 76:457–465Google Scholar
  37. Haynes E (1981) Early zoeal stages of Lebbeus polaris, Eualus suckleyi, E. fabricii, Spirontocaris aruata, S. ochotensis, and Heptacarpus camtschaticus (Crustacea, Decapoda, Caridea, Hippolytidae) and morphological characterisation of zoeae of Spirontocaris and related genera. Fish Bull 79:421–440Google Scholar
  38. Hilário A, Vilar S, Cunhar MR, Tyler P (2009) Reproductive aspects of two bythograeid crab species from hydrothermal vents in the Pacific-Antarctic Ridge. Mar Ecol Prog Ser. doi: 10.3354/meps07858 Google Scholar
  39. Hoagland P, Beaulieu S, Tivey MA, Eggert RG, German C, Glowka L, Lin J (2010) Deep-sea mining of seafloor massive sulphides. Mar Policy. doi: 10.1016/j.marpol.2009.12.001 Google Scholar
  40. Kilgour MJ, Shirley TC (2014) Reproductive biology of galetheoid and chirostyloid (Crustacea: Decapoda) squat lobsters from the Gulf of Mexico. Zootaxa. doi: 10.11646/Zootaxa.3754.4.3 Google Scholar
  41. Kinlan BP, Gaines SD (2003) Propagule dispersal in marine and terrestrial environments: a community perspective. Ecology. doi: 10.1890/01-0622 Google Scholar
  42. Komai T, Collins P (2009) Two new species of caridean shrimps (Decapoda: Hippolytidae and Nematocarcinidae) newly recorded from hydrothermal vents on the Manus Basin, southwestern Pacific. Crustac Res 38:28–41Google Scholar
  43. Komai T, Fujiwara Y (2012) Description of a new species of the hippolytid shrimp genus Eualus Thallwitz, 1892 from Japan, and clarification of the status of E. kikuchii Miyake & Hayashi, 1967 (Crustacea: Decapoda: Caridea). Zootaxa 3546:68–80Google Scholar
  44. Komai T, Tsuchida S, Segonzac M (2012) Records of species of the hippolytid genus Lebbeus White, 1847 (Crustacea: Decapoda: Caridea) from hydrothermal vents in the Pacific Ocean, with descriptions of three new species. Zootaxa 3421:35–63Google Scholar
  45. Lovrich GA, Romero MC, Tapella F, Thatje S (2005) Distribution, reproductive and energetic conditions of decapod crustaceans along the Scotia Arc (Southern Ocean). Sci Mar 69:183–193CrossRefGoogle Scholar
  46. Marsh L, Copley JT, Tyler PA, Thatje S (submitted) In hot and cold water: contrasting environmental conditions are key to the success of anomuran crabs at Antarctic deep-sea hydrothermal vents. J Anim Ecol, submittedGoogle Scholar
  47. Martin JW, Haney TA (2005) Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zool J Linn Soc 145:445–522CrossRefGoogle Scholar
  48. Mente E (2008) Reproductive biology of crustaceans: case studies of decapod crustaceans. Science Publishers, EnfieldCrossRefGoogle Scholar
  49. Miyake S, Hayashi K-I (1967) Studies on the hippolytid shrimps from Japan, I. Revision of the Japanese species of the genus Eualus, with description of two new species. J Fac Agric 14:247–265Google Scholar
  50. Nagaraju GPC (2011) Reproductive regulators in decapod crustaceans: an overiew. J Exp Biol. doi: 10.1242/jeb.047183 Google Scholar
  51. Nye V (2013) New species of hippolytid shrimps (Crustacea: Decapoda: Caridea: Hippolytidae) from a southwest Indian Ocean seamount. Zootaxa. doi: 10.11646/zootaxa.3637.2.1 Google Scholar
  52. Nye V (2014) Life-history biology and biogeography of invertebrates in deep-sea chemosynthetic environments. Doctoral thesis, University of Southampton, SouthamptonGoogle Scholar
  53. Nye V, Copley J, Plouviez S (2012) A new species of Rimicaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from hydrothermal vent fields on the Mid-Cayman Spreading Centre, Caribbean. J Mar Biol Assoc UK. doi: 10.1017/S0025315411002001 Google Scholar
  54. Nye V, Copley JT, Tyler PA (2013a) Spatial variation in the population structure and reproductive biology of Rimicaris hybisae (Caridea: Alvinocarididae) at hydrothermal vents on the Mid-Cayman Spreading Centre. PLoS one. doi: 10.1371/journal.pone.0060319 Google Scholar
  55. Nye V, Copley J, Plouviez S, Van Dover C (2013b) A new species of Lebbeus (Crustacea: Decapoda: Caridea: Hippolytidae) from the Von Damm Vent Field, Caribbean Sea. J Mar Biol Assoc UK. doi: 10.1017/S0025315412000884 Google Scholar
  56. Nye V, Copley J, Linse K, Plouviez S (2013c) Iheyaspira bathycodon new species (Vetigastropoda: Trochoidea: Turbinidae: Skeneinae) from the Von Damm Vent Field, Mid-Cayman Spreading Centre, Caribbean. J Mar Biol Assoc UK. doi: 10.1017/S0025315412000823 Google Scholar
  57. Olive PJW, Lewis C, Beardall V (2000) Fitness components of seasonal reproduction: an analysis using Nereis virens as a life history model. Oceanol Acta. doi: 10.1016/S0399-1784(00)00135-3 Google Scholar
  58. Oya F (1987) Growth, stomach contents and parasites in a tidepool population of the hippolytid shrimp Heptacarpus futilirostris, with reference to reproduction. Mar Biol. doi: 10.1007/BF00427022 Google Scholar
  59. Parra M, Selanes J, Dupre E, Krylova E (2009) Reproductive characteristics of Calyptogena gallardoi (Bivalvia: vesicomyidae) from a methane seep area off conception, Chile. J Mar Biol Assoc UK. doi: 10.1017/S0025315408002397 Google Scholar
  60. Perovich GM, Epifanio CE, Dittel AI, Tyler PA (2003) Spatial and temporal patterns in the vent crab Bythograea thermydron. Mar Ecol Prog Ser. doi: 10.3354/meps251211 Google Scholar
  61. Pinheiro MAA, Fransozo A (2002) Reproduction of the speckled swimming crab Arenaeus cribarius (Brachyura: portunidae) on the Brazilian coast near 23°30ʹS. J Crustac Biol. doi: 10.1163/20021975-99990249 Google Scholar
  62. Ramirez-Llodra E (2002) Fecundity and life-history strategies in marine invertebrates. Adv Mar Biol. doi: 10.1016/S0065-2881(02)43004-0 Google Scholar
  63. Ramirez-Llodra E, Segonzac M (2006) Reproductive biology of Alvinocaris muricola (Decapoda: Caridea: Alvinocarididae) from cold seeps in the Congo Basin. J Mar Biol Assoc UK. doi: 10.1017/S0025315406014378 Google Scholar
  64. Ramirez-Llodra E, Tyler PA, Copley JTP (2000) Reproductive biology of three caridean shrimp, Rimicaris exoculata, Chorocaris chacei and Mirocaris fortunata (Caridea: Decapoda), from hydrothermal vents. J Mar Biol Assoc UK. doi: 10.1017/S0025315400002174 Google Scholar
  65. Rex MA, Van Ummerson CA, Turner RA (1979) Reproductive pattern in the abyssal snail Benthonella tenella (Jeffreys). In: Stancyk SE (ed) Reproductive ecology of marine invertebrates. University of South Carolina Press, South Carolina, pp 173–188Google Scholar
  66. Román-Contreras R, Romero-Rodríguez J (2005) Incidence of infestation by Bopyrina abbreviata Richardson, 1904 (Isopoda: Bopyridae) on Hippolytidae zostericola (Smith, 1873) (Decapoda: Hippolytidae) in Laguna de Términos, Gulf of Mexico. Nauplius 13:83–88Google Scholar
  67. Romero-Rodríguez J, Román-Contreras R (2012) Population structure and reproduction of the seagrass shrimp Hippolyte zostericola (Decapoda: Hippolytidae) at Laguna de Términos, Campeche, Mexico. J Mar Biol Assoc UK. doi: 10.1017/S0025315411001974 Google Scholar
  68. Sastry AN (1983) Ecological aspects of reproduction. In: Vernberg FJ, Vernberg WB (eds) The biology of Crustacea: environmental adaptations. Academic Press, New York, pp 179–270Google Scholar
  69. Segonzac M (1992) The hydrothermal vent communities of Snake Pit area (Mid-Atlantic Ridge, 23°N, 3,480 m)—megafaunal composition and microdistribution. CR Acad Sci 314:593–600Google Scholar
  70. Stearns SC (1976) Life-history tactics; a review of the ideas. Q Rev Biol. doi: 10.1086/409052 Google Scholar
  71. Tapella F, Lovrich GA, Romero M, Thatje S (2002) Reproductive biology of the crab Munida subrugosa (Decapoda: Anomura: Galatheidae) in the Beagle Channel, Argentina. J Mar Biol Assoc UK. doi: 10.1017/S0025315402005921 Google Scholar
  72. Terossi M, Mentelatto FL (2010) Sexual ratio, reproductive period and seasonal variation of the gonochoric shrimp Hippolyte obliquimanus (Caridea: hippolytidae). Mar Biol Res. doi: 10.1080/17451000903078630 Google Scholar
  73. Terossi M, López Greco LS, Mantelatto FL (2008) Hippolyte obliquimanus (Decapoda: Caridea: Hippolytidae): a gonochoric or hermaphroditic shrimp species? Mar Biol. doi: 10.1007/s00227-008-0907-1 Google Scholar
  74. Terossi M, Toarti LS, Miranda I, Scelzo MA, Mantelatto FL (2010) Comparative reproductive biology of two southwestern Atlantic populations of the hermit crab Pagarus exilis (Crustacea: Anomura: Paguridae). Mar Ecol. doi: 10.1111/j.1439-0485.2010.00387.x Google Scholar
  75. Thatje S (2004) Reproductive trade-offs in benthic decapod crustaceans of high southern latitudes: tolerance of cold and food limitation. Ber Polarforsch Meeresfosch 483:1–35Google Scholar
  76. Tyler PA, Young CM (1999) Reproduction and dispersal at vents and cold seeps. J Mar Biol Assoc UK. doi: 10.1017/S0025315499000235 Google Scholar
  77. Urzúa Á, Apaschke K, Gebauer P, Anger K (2012) Seasonal and interannual variations in size, biomass and chemical composition of the eggs of the North Sea shrimp, Crangon crangon (Decapoda: Caridea). Mar Biol. doi: 10.1007/s00227-011-1837-x Google Scholar
  78. Van Dover CL (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: a review. Mar Env Res. doi: 10.1016/j.marenvres.2014.03.008 Google Scholar
  79. Van Dover CL, Factor JR, Williams AB, Berg CJ Jr (1985) Reproductive patterns of decapod crustaceans from hydrothermal vents. Bull Biol Soc Wash 6:223–227Google Scholar
  80. Van Dover CL, Humphris SE, Fornari D, Cavanaugh CM, Collier R, Goffredi SK, Hashimoto J, Lilley MD, Reysenbach AL, Shank TM, Von Damm KL, Banta A, Gallant RM, Gotz D, Green D, Hall J, Harmer TL, Hurtado LA, Johnson P, McKiness ZP, Meredith C, Olson E, Pan IL, Turnipseed M, Won Y, Young CR, Vrijenhoek RC (2001) Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science. doi: 10.1126/science.1064574 Google Scholar
  81. Van Dover CL, Smith CR, Ardon J, Dunn D, Gjerde K, Levin L, Smith S, The Dinard Workshop Contributors 6 (2012) Designating networks of chemosynthetic ecosystem reserves in the deep sea. Mar Policy. doi: 10.1016/j.marpol.2011.07.002 Google Scholar
  82. Wicksten MK (2010) Lebbeus laurentae: a replacement name for Lebbeus carinatus de Saint Laurent, 1984 (Decapoda: Caridea: Hippolytidae) and a redescription of the species. Proc Biol Soc Wash 123:196–203CrossRefGoogle Scholar
  83. Yang HJ, Okuno J (2004) First larvae of Lebbeus comanthi and Thor amboinensis (Decapoda: Hippolytidae) hatched in the laboratory. Korean J Biol Sci. doi: 10.1080/12265071.2004.9647729 Google Scholar
  84. Young CM (2003) Reproduction, development and life-history traits. In: Tyler PA (ed) Ecosystems of the deep oceans. Elsevier, Amsterdam, pp 381–426Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Ocean and Earth Science, National Oceanography Centre SouthamptonUniversity of SouthamptonSouthamptonUK

Personalised recommendations